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Abstract 

We introduce a framework for training architectures composed of several 
modules. This framework, which uses a statistical formulation of learning 
systems, provides a unique formalism for describing many classical 
connectionist algorithms as well as complex systems where several 
algorithms interact. It allows to design hybrid systems which combine the 
advantages of connectionist algorithms as well as other learning algorithms. 

1 INTRODUCTION 

Many recent achievements in the connectionist area have been carried out by designing 
systems where different algorithms interact. For example (Bourlard & Morgan, 1991) 
have mixed a Multi-Layer Perceptron (MLP) with a Dynamic Programming algorithm. 
Another impressive application (Le Cun, Boser & al., 1990) uses a very complex multi­
layer architecture, followed by some statistical decision process. Also, in speech or image 
recognition systems, input signals are sequentially processed through different modules. 
Modular systems are the most promising way to achieve such complex tasks. They can 
be built using simple components and therefore can be easily modified or extended, also 
they allow to incorporate into their architecture some structural a priori knowledge about 
the task decomposition. Of course, this is also true for connectionism, and important 
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progresses in this field could be achieved if we were able to train multi-modules 
architectures. 

In this paper, we introduce a formal framework for designing and training such 
cooperative systems. It provides a unique formalism for describing both the different 
modules and the global system. We show that it is suitable for many connectionist 
algorithms, which allows to make them cooperate in an optimal way according to the 
goal of learning. It also allows to train hybrid systems where connectionist and classical 
algorithms interact. Our formulation is based on a probabilistic approach to the problem 
of learning which is described in section 2. One of the advantages of this approach is to 
provide a formal definition of the goal of learning. In section 3, we introduce modular 
architectures where each module can be described using this framework, and we derive 
explicit formulas for training the global system through a stochastic gradient descent 
algorithm. Section 4 is devoted to examples, including the case of hybrid algorithms 
combining MLP and Learning Vector Quantization (Bollivier, Gallinari & Thiria, 1990). 

2 LEARNING SYSTEMS 

The probabilistic formulation of the problem of learning has been extensively studied for 
three decades (Tsypkin 1971), and applied to control, pattern recognition and adaptive 
signal processing. We recall here the main ideas and refer to (Tsypkin 1971) for a detailed 
presentation. 

2.1 EXPECTED COST 

Let x be an instance of the concept to learn. In the case of a pattern recognition problem 
for example, x would be a pair (pattern, class). The concept is mathematically defined by 
an unknown probability density function p(x) which measures the likelihood of instance 
x. 

We shall use a system parameterized by w to perform some task that depends on p(x). 
Given an example x, we can define a local cost, J(x,w), that measures how well our 
system behaves on that example. For instance, for classification J would be zero if the 
system puts a pattern in the correct class, or positive in case of misclassification. 

Learning consists in finding a parameter w· that optimises some functional of the model 
parameters. For instance, one would like to minimize the expected cost (1). 

C(w) = f J(x,w) p(x)dx (1) 

The expected cost cannot be explicitely computed, because the density p(x) is unknown. 
Our only knowledge of the process comes from a series of observations {X1 ... xn} drawn 
from the unknown density p(x). Therefore, the quality of our system can only be 
measured through the realisations J(x,w) of the local cost function for the different 
observations. 
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2.2 STOCHASTIC GRADIENT DESCENT 

Gradient descent algorithms are the simplest minimization algorithms. We cannot, 
however, compute the gradient of the expected cost (1), because p(x) is unknown. 
Estimating these derivatives on a training set {X1 .. . xn}, gives the gradient algorithm (2), 
where VJ denotes the gradient of J(x,w) with respect to w, and Et, a small positive 
constant. the "learning rate". 

1 n 
Wt+ 1 = Wt - Et - 2. V J(Xj,wt} 

n . 1 1-
(2) 

The stochastic gradient descent algorithm (3) is an alternative to algorithm (2). At each 
iteration, an example Xt is drawn at random, and a new value of w is computed. 

(3) 

Algorithm (3) is faster and more reliable than (2), it is the only solution for training 
adaptive systems like Neural networks (NN). Such stochastic approximations have been 
extensively studied in adpative signal processing (Benveniste. Metiver & Priouret, 1987). 
(Ljung & Soderstrom, 1983). Under certain conditions, algorithm (3) converges almost 
surely (Bottou, 1991). (White, 1991) and allows to reach an optimal state of the system. 

3 MODULAR LEARNING SYSTEMS 

Most often, when the goal of learning is complex, it can be achieved more easily by 
using a decomposition of the global task into several simpler subtasks which for instance 
reflect some a priori knowledge about the structure of the problem. One can use this 
decomposition to build modular architectures where each module will correspond to one of 
the subtasks. 

Within this framework, we will use the expected risk (1) as the goal of learning. The 
problem now is to change the analytical formulation of the functional (1) so as to 
introduce the modular decomposition of the global task. In (1), the analytic expression of 
the local cost J(x,w) has two meanings: it describes a parametric relationship between the 
inputs and the outputs of the system, and measures the quality of the system. To 
introduce the decomposition, one may write this local cost J(x,w) as the composition of 
several functions. One of them will take into account the local error and therefore measure 
the quality of the system; the others will correspond to the decomposition of the 
parametric relationship between the inputs and the outputs of the system (Figure 1). Each 
of the modules will therefore receive some inputs from other modules or the external 
world and produce some outputs which will be sent to other modules. 
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a I-y-p 

Figure 1: A modular system 

In classical systems. these modules correspond to well defmed processing stages like e.g. 
signal processing. filtering. feature extraction. classification. They are trained sequentially 
and then linked together to build a complete processing system which takes some inputs 
(e.g. raw signals) and produces some outputs (e.g. classes). Neither the assumed 
decomposition. nor the behavior of the different modules is guaranteed to optimally 
contribute to the global goal of learning. We will show in the following that it is 
possible to optimally train such systems. 

3.1 TRAINING MODULAR SYSTEMS 

Each function in the above composition defmes a local processing stage or module whose 
outputs are defined by a parametric function of its inputs (4). 

V' je y-1 (n), Yj = fj( (Xk) ke X-1 (n) , (Wi) ie W-1 (n) ) (4) 

y-1 (n) ( resp. X-1 (n). and W-1 (n) ) denotes the set of subscripts associated to the outputs 
Y ( resp. inputs x and parameters W ) of module n. Conversely. output Yj ( resp. input xk 
and parameter Wi ) belongs to module Y(j) ( resp. X(k) and W(i) ). 

Modules are linked so as to build a feed-forward topology which is expressed by a 
function cj). 

V'k, xk = Y~(k) (5) 

We shall consider that the first module only feeds the system with examples and that the 
last module only computes Ylast = J(x,w). 

Following (Le Cun. 1988). we can compute the derivatives of J with a Lagrangian 
method. Let a and ~ be the Lagrange coefficients for constraints (4) and (5). 

L = J - L ~k(Xk-Y~(k)) - L aj (Yr!j( (Xk) ke X-1Y(j), (Wi) ie W-1Y(j) )) (6) 
k j 

By equating the derivatives of L with respect to x and Y to zero. we get recursive formulas 
for computing a and ~ in a single backward pass along the acyclic graph cj). 
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alast = 1, 

Then, the derivatives of J with respect to the weights are: 

dJ dL -(w) = -(aRw) = 
dwi dwi ,.." 

d I: 
~ a' :LJ.. £.J J :l. ... 

je y-1W{i) UYVI 

(7) 

(8) 

Once we have computed the derivatives of the local cost J(x,w), we can apply the 
stochastic gradient descent algorithm (3) for minimizing of the expected cost C(w). 

We shall say that each module is defined by the equations in (7) and (8) that characterize 
its behavior. These equations are: 

• a forward equation (F) 

• a backward equation (B) 

• a gradient equation (G) 

Yj = fj( (xl<) keX-1(n) ,(Wi) ieW1(n) ) 

. Ell ~= L a J dXk 
jeY-'X(k) 

dJ a/: 
~i=-.= Laj ~ 

dwl je Y-'W(i) awl 

The remaining equations do not depend on the nature of the modules. They describe how 
modules interact during training. Like back-propagation, they address the credit 
assignment problem between modules by globally minimizing a single cost function. 
Training such a complex system actually consists in cooperatively training its 
components. 

4 EXAMPLES 

Most learning algorithms, as well as new algorithms may be expressed as modular 
learning systems. Here are some simple examples of modules and systems. 

4.1 LINEAR AND QUASI-LINEAR SYSTEMS 

MODULE SYMBOL FORWARD BACKWARD GRADIENT 
Matrix product Wx Yi-tWikXk ~k'""L<Xjwik ~ik=aixk 

i 

Mean square error MSE J. t{dk'Xk)2 ~k=-2 (dk-xk) 

Perceptron error Perceptron J.-t(dk-1 9t+(Xk»Xk ~k-- (dk-19t+(Xk» 

Sigmoid sigmo'id Yk·f(Xk) ~k,""f'(Xk)ak 

A few basic modules are defined in the above table. Figure 2 gives examples of linear and 
quasi linear algorithms derived by combining these modules. 
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( W x r.r MSE r J 

L Examples --1 

~~ perceptroj'" J 

L Examples ---' 

( Wx H sigmo'(d H Wx H sigmoId H MSE r J 

L 1 ExalT1lles _____________ ..1 

Figure 2: An Adaline, a Perceptron, and a 2-Layer Perceptron. 

Some MLP architectures, Time Delay Networks for instance, use local connections and 
shared weights. Such complex architectures may be constructed by defining either quasi­
linear unit modules or complex matrix operations modules like convolutions. The latter 
solution leads to more efficient implementations. Figure 3 gives an example of 
convolution module, composed of several matrix products modules. 

w 

I I - &.. ( Convolve ) -. Yk Xk Yk -
I I 

Figure 3: A convolution module, composed of several matrix product modules. 

4 ° 2 EUCLIDIAN DISTANCE BASED ALGORITHMS 

A wide class of learning systems are based on the measure of euclidian distances. Again, 
defining an euclidian distance module and some adequate cost functions allows for 
handling most euclidian distance based algorithms. Here are some examples: 

MODULE SYMBOL FORWARD BACKWARD GRADIENT 

Euclidian distance (x-w)2 ~k=-2tUj(Wjk-Xk) Ajk=2Uj(Wjk-Xk) 

Minimum Min ~ko-1, ~k,oko-O 

LVQ 1 error LVQ1 If the nearest reference Xk· is associated to the correct class 

J - Xko =Min{xiJ ~ko .1, ~k,ok·-O 
else 

J - -Xko =-Min{xiJ ~ko -1, ~k,ok°.O 

Combining an euclidian distance module with a "minimum" error module gives a K­
means algorithm; combining it with a LVQI error module gives the LVQI algorithm 
(Figure 4). 
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Examples 
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Figure 4: K-Means and Learning Vector Quantization. 

4.3 HYBRID ALGORITHMS 

Hybrid algorithms which may combine classical and connectionist learning algorithms are 
easily defined by chaining appropriate modules. Figure 5, for instance, depicts an 
algorithm combining a MLP layer and LVQ1. This algorithm has been described and 
empirically compared to other pattern recognition algorithms in (Bollivier, Gallinari & 
Thiria, 1990). 

( Wx 

1 
H sigmO·id)-.{ (w -X)2]-1 LVa 1 ~ J 

Examples 
1 

Figure 5: An hybrid algorithm combining a MLP and L VQ. 

Cooperative training gives a framework and a possible implementation for such 
algorithms. Nevertheless, there are still specific problems (e.g. convergence, 
initialization) which require a careful study. More complex hybrid systems, including 
combinations of Markov Models and Time Delay Networks, have been described within 
this framework in (Bottou,1991). 

5 CONCLUSION 

Cooperative training of modular systems provides a unified view of many learning 
algorithms, as well as hybrid systems which combine classical or connectionist 
algorithms. Our formalism provides a way to define specific modules and to combine 
them into a cooperative system. This allows to design and implement complex learning 
systems which eventually incorporate structural a priori knowledge about the task. 
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