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Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.

These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.

Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show

results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a

general-purpose solution to image-to-image translation

problems. These networks not only learn the mapping from

input image to output image, but also learn a loss func-

tion to train this mapping. This makes it possible to apply

the same generic approach to problems that traditionally

would require very different loss formulations. We demon-

strate that this approach is effective at synthesizing photos

from label maps, reconstructing objects from edge maps,

and colorizing images, among other tasks. Moreover, since

the release of the pix2pix software associated with this

paper, hundreds of twitter users have posted their own artis-

tic experiments using our system. As a community, we no

longer hand-engineer our mapping functions, and this work

suggests we can achieve reasonable results without hand-

engineering our loss functions either.

1. Introduction

Many problems in image processing, computer graphics,

and computer vision can be posed as “translating” an input

image into a corresponding output image. Just as a con-

cept may be expressed in either English or French, a scene

may be rendered as an RGB image, a gradient field, an edge

map, a semantic label map, etc. In analogy to automatic

language translation, we define automatic image-to-image

translation as the problem of translating one possible rep-

resentation of a scene into another, given sufficient train-

ing data (see Figure 1). Traditionally, each of these tasks

has been tackled with separate, special-purpose machinery

(e.g., [14, 23, 18, 8, 10, 50, 30, 36, 16, 55, 58]), despite

the fact that the setting is always the same: predict pixels

from pixels. Our goal in this paper is to develop a common

framework for all these problems.

The community has already taken significant steps in this

direction, with convolutional neural nets (CNNs) becoming

the common workhorse behind a wide variety of image pre-

diction problems. CNNs learn to minimize a loss function –

an objective that scores the quality of results – and although

the learning process is automatic, a lot of manual effort still

goes into designing effective losses. In other words, we still

have to tell the CNN what we wish it to minimize. But, just

like King Midas, we must be careful what we wish for! If

we take a naive approach, and ask the CNN to minimize

Euclidean distance between predicted and ground truth pix-

11125



els, it will tend to produce blurry results [40, 58]. This is

because Euclidean distance is minimized by averaging all

plausible outputs, which causes blurring. Coming up with

loss functions that force the CNN to do what we really want

– e.g., output sharp, realistic images – is an open problem

and generally requires expert knowledge.

It would be highly desirable if we could instead specify

only a high-level goal, like “make the output indistinguish-

able from reality”, and then automatically learn a loss func-

tion appropriate for satisfying this goal. Fortunately, this is

exactly what is done by the recently proposed Generative

Adversarial Networks (GANs) [22, 12, 41, 49, 59]. GANs

learn a loss that tries to classify if the output image is real

or fake, while simultaneously training a generative model

to minimize this loss. Blurry images will not be tolerated

since they look obviously fake. Because GANs learn a loss

that adapts to the data, they can be applied to a multitude of

tasks that traditionally would require very different kinds of

loss functions.

In this paper, we explore GANs in the conditional set-

ting. Just as GANs learn a generative model of data, condi-

tional GANs (cGANs) learn a conditional generative model

[22]. This makes cGANs suitable for image-to-image trans-

lation tasks, where we condition on an input image and gen-

erate a corresponding output image.

GANs have been vigorously studied in the last two

years and many of the techniques we explore in this pa-

per have been previously proposed. Nonetheless, ear-

lier papers have focused on specific applications, and

it has remained unclear how effective image-conditional

GANs can be as a general-purpose solution for image-to-

image translation. Our primary contribution is to demon-

strate that on a wide variety of problems, conditional

GANs produce reasonable results. Our second contri-

bution is to present a simple framework sufficient to

achieve good results, and to analyze the effects of sev-

eral important architectural choices. Code is available at

https://github.com/phillipi/pix2pix.

2. Related work

Structured losses for image modeling Image-to-image

translation problems are often formulated as per-pixel clas-

sification or regression (e.g., [36, 55, 25, 32, 58]). These

formulations treat the output space as “unstructured” in the

sense that each output pixel is considered conditionally in-

dependent from all others given the input image. Condi-

tional GANs instead learn a structured loss. Structured

losses penalize the joint configuration of the output. A

large body of literature has considered losses of this kind,

with methods including conditional random fields [9], the

SSIM metric [53], feature matching [13], nonparametric

losses [34], the convolutional pseudo-prior [54], and losses

based on matching covariance statistics [27]. The condi-

tional GAN is different in that the loss is learned, and can, in

theory, penalize any possible structure that differs between

output and target.

Conditional GANs We are not the first to apply GANs

in the conditional setting. Prior and concurrent works have

conditioned GANs on discrete labels [38, 21, 12], text [43],

and, indeed, images. The image-conditional models have

tackled image prediction from a normal map [52], future

frame prediction [37], product photo generation [56], and

image generation from sparse annotations [28, 45] (c.f. [44]

for an autoregressive approach to the same problem). Sev-

eral other papers have also used GANs for image-to-image

mappings, but only applied the GAN unconditionally, re-

lying on other terms (such as L2 regression) to force the

output to be conditioned on the input. These papers have

achieved impressive results on inpainting [40], future state

prediction [60], image manipulation guided by user con-

straints [61], style transfer [35], and superresolution [33].

Each of the methods was tailored for a specific applica-

tion. Our framework differs in that nothing is application-

specific. This makes our setup considerably simpler than

most others.

Our method also differs from the prior works in several

architectural choices for the generator and discriminator.

Unlike past work, for our generator we use a “U-Net”-based

architecture [47], and for our discriminator we use a convo-

lutional “PatchGAN” classifier, which only penalizes struc-

ture at the scale of image patches. A similar PatchGAN

architecture was previously proposed in [35], for the pur-

pose of capturing local style statistics. Here we show that

this approach is effective on a wider range of problems, and

we investigate the effect of changing the patch size.

3. Method

GANs are generative models that learn a mapping from

random noise vector z to output image y, G : z → y [22]. In

contrast, conditional GANs learn a mapping from observed

image x and random noise vector z, to y, G : {x, z} → y.

The generator G is trained to produce outputs that cannot be

distinguished from “real” images by an adversarially trained

discriminator, D, which is trained to do as well as possible

at detecting the generator’s “fakes”. This training procedure

is diagrammed in Figure 2.

3.1. Objective

The objective of a conditional GAN can be expressed as

LcGAN (G,D) =Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z))], (1)

where G tries to minimize this objective against an ad-

versarial D that tries to maximize it, i.e. G∗ =
argminG maxD LcGAN (G,D).
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Figure 2: Training a conditional GAN to map edges→photo. The

discriminator, D, learns to classify between fake (synthesized by

the generator) and real {edge, photo} tuples. The generator, G,

learns to fool the discriminator. Unlike an unconditional GAN,

both the generator and discriminator observe the input edge map.

To test the importance of conditioning the discriminator,

we also compare to an unconditional variant in which the

discriminator does not observe x:

LGAN (G,D) =Ey[logD(y)]+

Ex,z[log(1−D(G(x, z))]. (2)

Previous approaches have found it beneficial to mix the

GAN objective with a more traditional loss, such as L2 dis-

tance [40]. The discriminator’s job remains unchanged, but

the generator is tasked to not only fool the discriminator but

also to be near the ground truth output in an L2 sense. We

also explore this option, using L1 distance rather than L2 as

L1 encourages less blurring:

LL1(G) = Ex,y,z[‖y −G(x, z)‖1]. (3)

Our final objective is

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G). (4)

Without z, the net could still learn a mapping from x

to y, but would produce deterministic outputs, and there-

fore fail to match any distribution other than a delta func-

tion. Past conditional GANs have acknowledged this and

provided Gaussian noise z as an input to the generator, in

addition to x (e.g., [52]). In initial experiments, we did not

find this strategy effective – the generator simply learned

to ignore the noise – which is consistent with Mathieu et

al. [37]. Instead, for our final models, we provide noise

only in the form of dropout, applied on several layers of our

generator at both training and test time. Despite the dropout

noise, we observe only minor stochasticity in the output of

our nets. Designing conditional GANs that produce highly

stochastic output, and thereby capture the full entropy of the

conditional distributions they model, is an important ques-

tion left open by the present work.

3.2. Network architectures

We adapt our generator and discriminator architectures

from those in [41]. Both generator and discriminator use

modules of the form convolution-BatchNorm-ReLu [26].

Details of the architecture are provided in the supplemen-

tal materials online, with key features discussed below.

3.2.1 Generator with skips

A defining feature of image-to-image translation problems

is that they map a high resolution input grid to a high resolu-

tion output grid. In addition, for the problems we consider,

the input and output differ in surface appearance, but both

are renderings of the same underlying structure. Therefore,

structure in the input is roughly aligned with structure in the

output. We design the generator architecture around these

considerations.

Many previous solutions [40, 52, 27, 60, 56] to problems

in this area have used an encoder-decoder network [24]. In

such a network, the input is passed through a series of lay-

ers that progressively downsample, until a bottleneck layer,

at which point the process is reversed. Such a network re-

quires that all information flow pass through all the layers,

including the bottleneck. For many image translation prob-

lems, there is a great deal of low-level information shared

between the input and output, and it would be desirable to

shuttle this information directly across the net. For exam-

ple, in the case of image colorizaton, the input and output

share the location of prominent edges.

To give the generator a means to circumvent the bottle-

neck for information like this, we add skip connections, fol-

lowing the general shape of a “U-Net” [47]. Specifically, we

add skip connections between each layer i and layer n − i,

where n is the total number of layers. Each skip connec-

tion simply concatenates all channels at layer i with those

at layer n− i.

3.2.2 Markovian discriminator (PatchGAN)

It is well known that the L2 loss – and L1, see Fig-

ure 3 – produces blurry results on image generation prob-

lems [31]. Although these losses fail to encourage high-

frequency crispness, in many cases they nonetheless accu-

rately capture the low frequencies. For problems where this

is the case, we do not need an entirely new framework to

enforce correctness at the low frequencies. L1 will already

do.

This motivates restricting the GAN discriminator to only

model high-frequency structure, relying on an L1 term to

force low-frequency correctness (Eqn. 4). In order to model

high-frequencies, it is sufficient to restrict our attention to

the structure in local image patches. Therefore, we design

a discriminator architecture – which we term a PatchGAN

– that only penalizes structure at the scale of patches. This

discriminator tries to classify if each N × N patch in an

image is real or fake. We run this discriminator convoluta-

tionally across the image, averaging all responses to provide

the ultimate output of D.

In Section 4.4, we demonstrate that N can be much

smaller than the full size of the image and still produce

high quality results. This is advantageous because a smaller
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PatchGAN has fewer parameters, runs faster, and can be

applied on arbitrarily large images.

Such a discriminator effectively models the image as a

Markov random field, assuming independence between pix-

els separated by more than a patch diameter. This connec-

tion was previously explored in [35], and is also the com-

mon assumption in models of texture [15, 19] and style

[14, 23, 20, 34]. Our PatchGAN can therefore be under-

stood as a form of texture/style loss.

3.3. Optimization and inference

To optimize our networks, we follow the standard ap-

proach from [22]: we alternate between one gradient de-

scent step on D, then one step on G. We use minibatch

SGD and apply the Adam solver [29].

At inference time, we run the generator net in exactly

the same manner as during the training phase. This differs

from the usual protocol in that we apply dropout at test time,

and we apply batch normalization [26] using the statistics of

the test batch, rather than aggregated statistics of the train-

ing batch. This approach to batch normalization, when the

batch size is set to 1, has been termed “instance normal-

ization” and has been demonstrated to be effective at im-

age generation tasks [51]. In our experiments, we use batch

sizes between 1 and 10 depending on the experiment.

4. Experiments

To explore the generality of conditional GANs, we test

the method on a variety of tasks and datasets, including both

graphics tasks, like photo generation, and vision tasks, like

semantic segmentation:

• Semantic labels↔photo, trained on the Cityscapes dataset [11].
• Architectural labels→photo, trained on CMP Facades [42].
• Map↔aerial photo, trained on data scraped from Google Maps.
• BW→color photos, trained on [48].
• Edges→photo, trained on data from [61] and [57]; binary edges gen-

erated using the HED edge detector [55] plus postprocessing.
• Sketch→photo: tests edges→photo models on human-drawn

sketches from [17].
• Day→night, trained on [30].

Details of training on each of these datasets are provided

in the supplemental materials online. In all cases, the in-

put and output are simply 1-3 channel images. Qualita-

tive results are shown in Figures 7, 8, 9, 10, and 11, with

additional results and failure cases in the materials online

(https://phillipi.github.io/pix2pix/).

4.1. Evaluation metrics

Evaluating the quality of synthesized images is an open

and difficult problem [49]. Traditional metrics such as per-

pixel mean-squared error do not assess joint statistics of the

result, and therefore do not measure the very structure that

structured losses aim to capture.

In order to more holistically evaluate the visual qual-

ity of our results, we employ two tactics. First, we run

Loss Per-pixel acc. Per-class acc. Class IOU

L1 0.42 0.15 0.11

GAN 0.22 0.05 0.01

cGAN 0.57 0.22 0.16

L1+GAN 0.64 0.20 0.15

L1+cGAN 0.66 0.23 0.17

Ground truth 0.80 0.26 0.21

Table 1: FCN-scores for different losses, evaluated on Cityscapes

labels↔photos.

“real vs fake” perceptual studies on Amazon Mechanical

Turk (AMT). For graphics problems like colorization and

photo generation, plausibility to a human observer is often

the ultimate goal. Therefore, we test our map generation,

aerial photo generation, and image colorization using this

approach.

Second, we measure whether or not our synthesized

cityscapes are realistic enough that off-the-shelf recognition

system can recognize the objects in them. This metric is

similar to the “inception score” from [49], the object detec-

tion evaluation in [52], and the “semantic interpretability”

measures in [58] and [39].

AMT perceptual studies For our AMT experiments, we

followed the protocol from [58]: Turkers were presented

with a series of trials that pitted a “real” image against a

“fake” image generated by our algorithm. On each trial,

each image appeared for 1 second, after which the images

disappeared and Turkers were given unlimited time to re-

spond as to which was fake. The first 10 images of each

session were practice and Turkers were given feedback. No

feedback was provided on the 40 trials of the main experi-

ment. Each session tested just one algorithm at a time, and

Turkers were not allowed to complete more than one ses-

sion. ∼ 50 Turkers evaluated each algorithm. All images

were presented at 256 × 256 resolution. Unlike [58], we

did not include vigilance trials. For our colorization ex-

periments, the real and fake images were generated from

the same grayscale input. For map↔aerial photo, the real

and fake images were not generated from the same input, in

order to make the task more difficult and avoid floor-level

results.

FCN-score While quantitative evaluation of generative

models is known to be challenging, recent works [49, 52,

58, 39] have tried using pre-trained semantic classifiers to

measure the discriminability of the generated stimuli as a

pseudo-metric. The intuition is that if the generated images

are realistic, classifiers trained on real images will be able

to classify the synthesized image correctly as well. To this

end, we adopt the popular FCN-8s [36] architecture for se-

mantic segmentation, and train it on the cityscapes dataset.

We then score synthesized photos by the classification accu-

racy against the labels these photos were synthesized from.

1128



Input Ground truth L1 cGAN L1 + cGAN

Figure 3: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see

https://phillipi.github.io/pix2pix/ for additional examples.
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Figure 4: Adding skip connections to an encoder-decoder to create

a “U-Net” results in much higher quality results.
Discriminator

receptive field Per-pixel acc. Per-class acc. Class IOU

1×1 0.39 0.15 0.10

16×16 0.65 0.21 0.17

70×70 0.66 0.23 0.17

286×286 0.42 0.16 0.11

Table 2: FCN-scores for different receptive field sizes of the dis-

criminator, evaluated on Cityscapes labels→photos. Note that in-

put images are 256 × 256 pixels and larger receptive fields are

padded with zeros.

4.2. Analysis of the objective function

Which components of the objective in Eqn. 4 are impor-

tant? We run ablation studies to isolate the effect of the L1

term, the GAN term, and to compare using a discriminator

conditioned on the input (cGAN, Eqn. 1) against using an

unconditional discriminator (GAN, Eqn. 2).

Figure 3 shows the qualitative effects of these variations

on two labels→photo problems. L1 alone leads to reason-

able but blurry results. The cGAN alone (setting λ = 0 in

Eqn. 4) gives much sharper results, but introduces visual ar-

tifacts on certain applications. Adding both terms together

(with λ = 100) reduces these artifacts.

We quantify these observations using the FCN-score on

the cityscapes labels→photo task (Table 1): the GAN-based

objectives achieve higher scores, indicating that the synthe-

sized images include more recognizable structure. We also

test the effect of removing conditioning from the discrimi-

nator (labeled as GAN). In this case, the loss does not pe-

nalize mismatch between the input and output; it only cares

that the output look realistic. This variant results in very

poor performance; examining the results reveals that the

generator collapsed into producing nearly the exact same

output regardless of input photograph. Clearly it is impor-

tant, in this case, that the loss measure the quality of the

match between input and output, and indeed cGAN per-

forms much better than GAN. Note, however, that adding

an L1 term also encourages that the output respect the in-

put, since the L1 loss penalizes the distance between ground

truth outputs, which correctly match the input, and synthe-

sized outputs, which may not. Correspondingly, L1+GAN

is also effective at creating realistic renderings that respect

the input label maps. Combining all terms, L1+cGAN, per-

forms similarly well.

Colorfulness A striking effect of conditional GANs is

that they produce sharp images, hallucinating spatial struc-

ture even where it does not exist in the input label map. One

might imagine cGANs have a similar effect on “sharpening”

in the spectral dimension – i.e. making images more color-

ful. Just as L1 will incentivize a blur when it is uncertain

where exactly to locate an edge, it will also incentivize an

average, grayish color when it is uncertain which of several

plausible color values a pixel should take on. Specially, L1

will be minimized by choosing the median of of the con-

ditional probability density function over possible colors.

An adversarial loss, on the other hand, can in principle be-

come aware that grayish outputs are unrealistic, and encour-

age matching the true color distribution [22]. In Figure 6,

we investigate if our cGANs actually achieve this effect on

the Cityscapes dataset. The plots show the marginal distri-

butions over output color values in Lab color space. The

ground truth distributions are shown with a dotted line. It

is apparent that L1 leads to a narrower distribution than the

ground truth, confirming the hypothesis that L1 encourages

average, grayish colors. Using a cGAN, on the other hand,

pushes the output distribution closer to the ground truth.

4.3. Analysis of the generator architecture

A U-Net architecture allows low-level information to

shortcut across the network. Does this lead to better re-

sults? Figure 4 compares the U-Net against an encoder-
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L1 1×1 16×16 70×70 286×286

Figure 5: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become

blurry and desaturated under L1. The 1x1 PixelGAN encourages greater color diversity but has no effect on spatial statistics. The 16x16

PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70×70 PatchGAN forces

outputs that are sharp, even if incorrect, in both the spatial and spectral (colorfulness) dimensions. The full 286×286 ImageGAN produces

results that are visually similar to the 70×70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 2). Please

see https://phillipi.github.io/pix2pix/ for additional examples.
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Loss L a b

L1 0.81 0.69 0.70

cGAN 0.87 0.74 0.84

L1+cGAN 0.86 0.84 0.82

PixelGAN 0.83 0.68 0.78
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Figure 6: Color distribution matching property of the cGAN, tested on Cityscapes. (c.f. Figure 1 of the original GAN paper [22]). Note

that the histogram intersection scores are dominated by differences in the high probability region, which are imperceptible in the plots,

which show log probability and therefore emphasize differences in the low probability regions.

input output input output

Map to aerial photo Aerial photo to map

Figure 7: Example results on Google Maps at 512x512 resolution (model was trained on images at 256 × 256 resolution, and run convo-

lutionally on the larger images at test time). Contrast adjusted for clarity.

decoder on cityscape generation. The encoder-decoder is

created simply by severing the skip connections in the U-

Net. The encoder-decoder is unable to learn to generate

realistic images in our experiments. The advantages of the

U-Net appear not to be specific to conditional GANs: when

both U-Net and encoder-decoder are trained with an L1 loss,

the U-Net again achieves the superior results (Figure 4).

4.4. From PixelGANs to PatchGans to ImageGANs

We test the effect of varying the patch size N of our dis-

criminator receptive fields, from a 1 × 1 “PixelGAN” to a

full 286 × 286 “ImageGAN”1. Figure 5 shows qualitative

1We achieve this variation in patch size by adjusting the depth of the

GAN discriminator. Details of this process, and the discriminator architec-

results of this analysis and Table 2 quantifies the effects us-

ing the FCN-score. Note that elsewhere in this paper, unless

specified, all experiments use 70× 70 PatchGANs, and for

this section all experiments use an L1+cGAN loss.

The PixelGAN has no effect on spatial sharpness, but

does increase the colorfulness of the results (quantified in

Figure 6). For example, the bus in Figure 5 is painted gray

when the net is trained with an L1 loss, but becomes red

with the PixelGAN loss. Color histogram matching is a

common problem in image processing [46], and PixelGANs

may be a promising lightweight solution.

Using a 16×16 PatchGAN is sufficient to promote sharp

outputs, and achieves good FCN-scores, but also leads to

tures are provided in the in the supplemental materials online.
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Classification Ours
L2 [58] (rebal.) [58] (L1 + cGAN) Ground truth

Figure 8: Colorization results of conditional GANs versus the L2

regression from [58] and the full method (classification with re-

balancing) from [60]. The cGANs can produce compelling col-

orizations (first two rows), but have a common failure mode of

producing a grayscale or desaturated result (last row).

Photo → Map Map → Photo

Loss % Turkers labeled real % Turkers labeled real

L1 2.8% ± 1.0% 0.8% ± 0.3%

L1+cGAN 6.1% ± 1.3% 18.9% ± 2.5%

Table 3: AMT “real vs fake” test on maps↔aerial photos.

Method % Turkers labeled real

L2 regression from [58] 16.3% ± 2.4%

Zhang et al. 2016 [58] 27.8% ± 2.7%

Ours 22.5% ± 1.6%

Table 4: AMT “real vs fake” test on colorization.

Loss Per-pixel acc. Per-class acc. Class IOU

L1 0.86 0.42 0.35

cGAN 0.74 0.28 0.22

L1+cGAN 0.83 0.36 0.29

Table 5: Performance of photo→labels on cityscapes.

tiling artifacts. The 70 × 70 PatchGAN alleviates these ar-

tifacts and achieves similar scores. Scaling beyond this, to

the full 286× 286 ImageGAN, does not appear to improve

the visual quality of the results, and in fact gets a consider-

ably lower FCN-score (Table 2). This may be because the

ImageGAN has many more parameters and greater depth

than the 70× 70 PatchGAN, and may be harder to train.

Fully-convolutional translation An advantage of the

PatchGAN is that a fixed-size patch discriminator can be

applied to arbitrarily large images. We may also apply the

generator convolutionally, on larger images than those on

which it was trained. We test this on the map↔aerial photo

task. After training a generator on 256×256 images, we test

it on 512×512 images. The results in Figure 7 demonstrate

the effectiveness of this approach.

4.5. Perceptual validation

We validate the perceptual realism of our results on the

tasks of map↔aerial photograph and grayscale→color. Re-

sults of our AMT experiment for map↔photo are given in

Table 3. The aerial photos generated by our method fooled

participants on 18.9% of trials, significantly above the L1

baseline, which produces blurry results and nearly never

fooled participants. In contrast, in the photo→map direc-

tion our method only fooled participants on 6.1% of tri-

als, and this was not significantly different than the perfor-

mance of the L1 baseline (based on bootstrap test). This

may be because minor structural errors are more visible

in maps, which have rigid geometry, than in aerial pho-

tographs, which are more chaotic.

We trained colorization on ImageNet [48], and tested

on the test split introduced by [58, 32]. Our method, with

L1+cGAN loss, fooled participants on 22.5% of trials (Ta-

ble 4). We also tested the results of [58] and a variant of

their method that used an L2 loss (see [58] for details). The

conditional GAN scored similarly to the L2 variant of [58]

(difference insignificant by bootstrap test), but fell short of

[58]’s full method, which fooled participants on 27.8% of

trials in our experiment. We note that their method was

specifically engineered to do well on colorization.

4.6. Semantic segmentation

Conditional GANs appear to be effective on problems

where the output is highly detailed or photographic, as is

common in image processing and graphics tasks. What

about vision problems, like semantic segmentation, where

the output is instead less complex than the input?

To begin to test this, we train a cGAN (with/without L1

loss) on cityscape photo→labels. Figure 11 shows qualita-

tive results, and quantitative classification accuracies are re-

ported in Table 5. Interestingly, cGANs, trained without the

L1 loss, are able to solve this problem at a reasonable degree

of accuracy. To our knowledge, this is the first demonstra-

tion of GANs successfully generating “labels”, which are

nearly discrete, rather than “images”, with their continuous-

valued variation2. Although cGANs achieve some success,

they are far from the best available method for solving this

problem: simply using L1 regression gets better scores than

using a cGAN, as shown in Table 5. We argue that for vision

problems, the goal (i.e. predicting output close to ground

truth) may be less ambiguous than graphics tasks, and re-

construction losses like L1 are mostly sufficient.

4.7. Community­driven Research

Since the initial release of the paper and our pix2pix

codebase, the Twitter community, including computer vi-

sion and graphics practitioners as well as artists, have suc-

cessfully applied our framework to a variety of novel image-

to-image translation tasks, far beyond the scope of the orig-

inal paper. Figure 10 shows just a few examples from

the #pix2pix hashtag, such as Sketch → Portrait, ”Do as

2Note that the label maps we train on are not exactly discrete valued,

as they are resized from the original maps using bilinear interpolation and

saved as jpeg images, with some compression artifacts.
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Figure 9: Results of our method on several tasks (data from [42] and [17]). Note that the sketch→photo results are generated by a model

trained on automatic edge detections and tested on human-drawn sketches. Please see online materials for additional examples.

Sketch→ Portrait Depth→Streetview Background removal

Palette generation“Do as I do”

by @gods_tail

by @ivymyt

by @vvid

Sketch → Pokemon

by Mario Klingemann

by Brannon Dorsey by Jack Qiao

by Jasper van Loenen

by Bertrand Gondouin

by Kaihu Chen

#edges2cats by Christopher Hesse

Figure 10: Example applications developed by online community based on our pix2pix codebase: #edges2cats [3] by Christopher Hesse,

Sketch → Portrait [7] by Mario Kingemann, “Do As I Do” pose transfer [2] by Brannon Dorsey, Depth→ Streetview [5] by Jasper van

Loenen, Background removal [6] by Kaihu Chen, Palette generation [4] by Jack Qiao, and Sketch→ Pokemon [1] by Bertrand Gondouin.

Input Ground truth L1 cGAN

Figure 11: Applying a conditional GAN to semantic segmenta-

tion. The cGAN produces sharp images that look at glance like

the ground truth, but in fact include many small, hallucinated ob-

jects.

I Do” pose transfer, Depth→Streetview, Background re-

moval, Palette generation, Sketch→Pokemon, as well as the

bizarrely popular #edges2cats.

5. Conclusion

The results in this paper suggest that conditional adver-

sarial networks are a promising approach for many image-

to-image translation tasks, especially those involving highly

structured graphical outputs. These networks learn a loss

adapted to the task and data at hand, which makes them ap-

plicable in a wide variety of settings.
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