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Correlation Matrix Memories
TEUVO KOHONEN

Abstract-A new model for associative memory, based on a correla- matrix, and the rest of the elements are put equal to zero. In
tion matrix, is suggested. In this model information is accumulated on a t

- ~~~~~~~~~~~~~additionto such a ranldomly sam led matrix, we discuss a
memory elements as products of component data. Denoting a key vector
by q(P), and the data' associated with it by another vector x(P), the pairs randomly generated associative network in which a set of
(q(P), x(")) are memorized in the form of a matrix memory elements is interconnected at random to two input

cEx(P)q(P) = Mxq elements. If the number of memory elements is sufficiently
P large, this model still reconstructs information stored in it.

where c is a constant. A randomly selected subset of the elements of Mxq Such a matrix is both failure tolerant, and completely ran-
can also be used for memorizing. The recalling of a particular datum x(r
is made by a transformation x(r) - Mxqq(r). This model is failure domly organized.
tolerant and facilitates associative search of information; these are proper- In this paper, after setting up the structure of the model,
ties that are usually assigned to holographic memories. Two classes of we will make a formal mathematical approach to the prob-
memories are discussed: a complete correlation matrix memory (CCMM)i, s n o t
and randomly organized incomplete correlation matrix memories (ICMM). em In which the analyzed.
The data recalled from the latter are stochastic variables but the fidelity
of recall is shown to have a deterministic limit if the number of memory The Model
elements grows without limits. A special case of correlation matrix
memories is the auto-associative memory in which any part of the memo- The correlation matrix model has the structure depicted
rized information can be used as a key. The memories are selective with in Fig. 1. Here we have an input field which consists of two
respect to accumulated data. The ICMM exhibits adaptive improvement
under certain circumstances. It is also suggested that correlation matrix .prts:t setf ut elem e enod by and se
memories could be applied for the classification of data. comprises a keyfield used for the encoding of data, and the

set denoted by an index set J is a data field. All input ele-
Index Terms-Associative memory, associative net, associative recall, ments, called receptors in what follows, receive a set of si-

correlation matrix memory, nonholographic associative memory, pattern multaneous input signals. For simplicity, we are working in
recognition.

discrete-time representation in which the signals are as-
1. INTRODUCTION sumed to be present at sampling instants. All signals of the

F1NOR the associative search of memorized information, key field taken together form a key vector denoted by q(P);
optical holography has been suggested [1 ]-[4]. Some here the superscript p is a discrete-time index, or the label of
specific mathematical models for simulated holo- a particular pattern. All signals of the data field taken to-

graphic memories have recently been presented [5]-[8]. It gether form a datum vector denoted by x(p) where p labels the
has also been assumed that the recording of information in pattern. In componentform, elements of the set { qi(P) i(E}
biological memories might be based on holography [9]-[lI ]. constitute the components of the key vector whereas
Steinbuch [12], [13], and Willshaw, Buneman, and Longuet- { xj(p) lJiJ} is the set of data signals.
Higgins [14], [15] suggested a nonholographic associative Yet another field of memory elements or associators con-
memory for the same purpose, based on a switching matrix. sists of elements labeled by a pair (i, j) corresponding to the

In this paper we replace the "Lernmatrix" of Steinbuch by ith element of the key field and the jth element of the data
a correlation matrix of component signals. It is assumed that field to which the associator is connected. If there are con-
products of signals can be formed and memorized by net- nections for all possible pairs (i, j) and only one of a type, we
work elements. The possibility of the formation of products speak of a complete correlation matrix memory (CCMM). If
of neural signals has been analyzed by Rapoport [16], connections exist only for a randomly selected subset of all
Jenik [17], [18], and Kiipfmiiller and Jenik [19]. In this possible pairs (i, j), or if they are created at random without
paper we discuss some analytical properties of matrix trans- prior examination for the existence of a pair of connections,
formations used for associative recall but not the possible we speak of incomplete correlation matrix memories
role of such networks in neural systems. (ICMM's). The memorization of data is made by increasing
The correlation matrix might become immensely large the value of every associator element Mji by an amount di-

with a large number of input signals. We can show that it rectly proportional to qrgxI): for a set
will then suffice to take a set of random samples of its ele-
ments for the representation of the information stored in the p= 4 1 2, , p,- }

of patterns,
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RECEPTORS ASSOCIATORS in which case the recall is perfect for every x(r),

=(r) = X (r)

KEY FIELD The nonorthogonality of key vectors gives rise to crosstalk

{qJP), iel} that may have the same polarity as the recorded data or the

>\ / ASSOCIATOR FIELD opposite. The relative crosstalk level for a particular datum
is defined as

ji L (P, r) = (7)~~~~qr)

DATA FIELD Equation (7) gives a measure to selectivity.

0

A. Stochastically Sampled Correlation Matrix

Fig. 1. Associative network. The number of matrix elements, mn in total, may grow im-
practically large if the dimensions of q and x are increased.

. . . ~~~~~~~~Letus first discuss in this section a hypothetical case in
where c is a normalizing constant. The recall of a particular y
xj(r) associated with a key vector q(r) is made by transfor- which a randomly selected subset of the elements of Mx is
mation used to represent the complete correlation matrix. Let us

define sampling coefficients sij that take the value 1 at all
tj = E Mj1qi(r) (2) sampled elements of the correlation matrix and 0 elsewhere.

i The sampled correlation matrix is then defined as

The memorization-recall-transformation defined by (1) and
(2) has a bearing on the well-known Gauss-Markov esti- (Mxq)i = c i (8)
mator. p

First we show that the recalled data indeed have a certain and the recalled pattern reads, in analogy with (5), for all j,
structural conformity to the memorized information.

m

II. COMPLETE CORRELATION MATRIX MEMORY (CCMM) XJ(r) = C E siJq,jP)q(r)Xj(P)
p i=l

The complete correlation matrix is an array that has one
and only one memory element for every pair (i, j) of indices, c(qfr))2 XI(r) + c E si1q.(P)q,(r)xj(P)
for iCI, JEJ. The contents of the associator field are de- cL p#r i=
scribed by the matrix

= K1(r)xI(r) E Kj(Pr)Xj(p). (9)

Mxq = C E x (P)q (P)T (3) ppr

The gain factors Kj(r) and K(P,r) are stochastic variables.
where c is a constant and T denotes the transpose. A partic- Notice that if we were dealing with estimation problems or

ular datum x(r) will be recalled by a transformation the classification of statistically distributed input signals, we
should discuss the input signals qi(p) and xj(P) as stochastic

x(r) = Mxqq(r) (4) variables. This, however, is not the case with the present

Let us substitute Mxq from (3) to(4): study. In our model every signal has a unique value at every
sampling instant, i.e., a value that must be memorized as

7' such. To put it in another way, because the signals are not
x(r)-c E x(P)q(P)q(r) regarded as stochastic variables, there is no need to discuss

p their statistical distributions or correlations between these
= cx(t [|q(r)||2] + c E x(P)q(P)Tq(r) (5) signals. in the following we thus assume that the sampling

rid i~of matrix elements is independent of all qt(P) in which case

wher . dnote theEuchean orm f a ecto, ifthe the qj(P) can be regarded as constant parameters with values
innere pro11ducoteson twokuleynnrmovectorsqPan q(r arezeo attained in a particular realization, and only the sis,G 0, }

i.e., if all key vectors are orthogonal, wve see that x(r iS di- ar tohsi vaibls th prbailt fosI) benh ie
rectly proportional to x(r). If the Euclidean norms of dif- noe byw(<w.1- hr
ferent key vectors are equal, c can further be selected asw= s_(0

C = ||q(r)fll-2 (constant wvith r) (6) mn
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andand Number of sampled matrixelements.var (K/(Pr)) = c2W(1- w)E (q,(P)q,(r))2. (17)
s Number of sampled matrix elements. ^-
m Number of components in q. The relative standard deviation of the recalled data due to
n Number of components in x.

all patterns is obtained from (9) and the previous considera-
Because it is our main objective to analyze what sort of tions, for allj,

noise (or statistical error) is introduced by the use of a ran- ((r
domly sampled incomplete matrix instead of a complete one, -var(xj )
we shall derive expressions for the expectation values and EGxjr))
variances of signals recalled from the memory, whereby 2

these statistical operations refer only to the sampling pro- qip r)X/18
cess. _ . (8

It is known from elementary statistics that if Y1, Y2, Zw qiP)qx
Ym are independent stochastic variables with means M1, p

p r

M2, , M.,, and variances o12, 0,22, ,2,m22 respectively,
we have for a linear combination X of the Y's, If other parameters are finite, the relative standard deviation

approaches zero for w-*l.
M= a~ y. Example 1: Let us take a representative case with one

memorized pattern only and qi(P) E{ + -1 } for which we
obtain

E(X) = aiMi /var ( =r)) 1-w mn -s

m E(x1(r))I mw ms
var (X) = E as2¢X2. Since (19) gives the relative standard deviation of a recalled

pattern, we obtain an order of magnitude rule. If w is much
Because all sipcan be assumed independent since n is a large smaller than 1, as is usually the case, if the maximum allowed
number, the probability distribultion Pr (st,= 1), as is well relative standard deviation is N, and if the number of com-
known, is binomial. The mean of sij is then ponents in the key vector is m>>l, then the minimum num-

E(sij) = w (11) ber of sampled matrix elements must be

and the variance of s,j is s = mnw >- (20)
- N2

var (sij) = w(1 - w). (12)
which thus depends on the number n of components in the

For K1(r) and K1( r) we have now, regarding qj(P) as param- data vector x only. For example, if N= 0.1, we must have
eters, the means and variances s> lOOn.

m It is not difficult to generalize the above results and show
E(Kj(0)= cw Z (qi(r))2 (13) that the number of sampled matrix elements for a given

percentage noise is obviously directly proportional to the
m number of components in the data vector, for any amount of

var (Kj(r)) = C2W(1- w) E (q(r))4 (14) them. This, of course, is advantageous with a large number
of elements in q.

The fidelity of recall is conveniently described in terms of Example 2: If we again consider the recall of a memorized
a relative standard deviation which for the noise due only to single pattern, and qi(P) { -+ 0,0-1 }, we have a distribu-

the searched pattern is tion of qi(P) which is less uniform than in Example 1. De-
__ _ noting the fraction of nonzero components in the key vectors

V / - (q.(r))4 by a(O<a.< 1) we have

Er(K1(D - i-W_z - _-, (15) /varQr)) = /1-w = m/ n-sqi (21)

Z (qiv(r))E2Kj) Vr a wmw 'V ims

In this case the necessary number of sampled matrix ele-
The crosstalk from another pattern (p) is expressed by the ments for relative standard deviation N is

average crosstalk level,
n

E(Kj(P r)) = ew qEqip) (r) (16) wN2
2 M1 For example, if there are 80 percent zeros in the key and

and the variance of this level is N=0.1, we m1ust have s> SOOn.
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B. Randomly Generated Correlation Matrix Memory and the relative standard deviation of a recalled signal, due

We will now make a more realistic approach and assume to all patterns, is
that connections are generated stochastically without prior m 2
examination for the existence of connections. A matrix Mxq E E qi(P)qi(r)X(p)
formed of the Mji may thus include multiple elements if two V/var (12j(r)) __ _ ____\p (34)
associators have identical connections. The only difference E(.j;,)) = m

with respect to the cases of Section 111-A is that we must E q (P)q(r)X(p)
now use occupation numbers Zi; of matrix elements (instead p i=1

of sij), zijE1{0, 1, 2, .. If other parameters are finite, the relative standard deviation

approaches zero for s->o, i.e., , ->oo.
(Mxq) j =c , Zljqi(p)X/P) (23) Example 3: Let us repeat the problem of Example 1 for

- randomly generated connections. The only difference is in the
where the distribution of Zij is Poissonian, expression for variance and we obtain

Pr (zi1=i ) = e- (24) \var (Kj(r))
E(KjrA)

and the parameter of this distribution is
For any value of,ui, we must now have

8
A= (25)
mn s > (36)

NV2
where s is the number of associators.
The distribution defined by (24) is obviously the same as Example 4. Repeating the problem of Example 2 for ran-

the distribution of hits in s stochastic throws on squares of a domly generated connections, we have
board with mn squares. The recalled pattern is for allj, ___ __

V~~~~~~~~~~~~~~\var (K3.(r)) __)

[(r)= Z.Ep(qi(r)) 2 X(r) + C zi1qi(P)qi(r)x(P) E(J1(r)) 4/a37m
. i=l ~~~~~pwdr i=~1

= K/(r)xJJr) + E K/(p,r)xjP). (26) Thus, without any restriction on t, we must have

n
Now we have s>> - (38)

E(zx1) = =- (27)
mn 1V. RECALL BY AN INCOMPLETE KEY

var (zij) = (28) On account of the fact that information in a correlation

and then matrix memory is stored in redundant form, the recalling of
a stored item can also be made by an incomplete key which

E(K.(r))- C (q.(r))2 (29) has a high correlation with the key used during memoriza-
tion. To show this fact by a specific example, we define de-
terministic projection parameters PiC 0, 1 } which for

var (K,(r)) c22 E (q!(r)) 4 (30) known elements of q(r) are 1 and otherwise 0. The memoriza-
tion is still defined by (1) but during recall, the key vector has

and the components

m q. (r) = Piq, (Po), Po P. (39)
E(Kj'P r)) = cg E qi(p)qi(r) (31)

0=1 Then we have forfan ICMM
m

var (K(PTr)) = C2II , (qi(p)q,(r)) 2 (32) *(r) = c E E (Po)

The relative standard deviation of gain factor KF(r) due to the m
searched pattern only is . Zc zjPiqi(po)q7po)j xj(Po,

x/var (Kf"') =,-1 /2 __(33) +I c E E iPv Pqi(ox(> (40)

i=(l()) The expectation value of recalled data is
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m crosstalk from other patterns given by the last terms in (46).
E(fc.r)) = cg E Pi(q,(Po))x(po) Notice that if there are many zeros in the pattern, the re-

quirement of approximate orthogonality is usually fulfilled.
m

+ Ci Z E Piqi(P)qi(Po)x/(P) (41) VI. UNSUPERVISED LEARNING IN THE ICMM
P3P4 i--l

When the key vectors contain many zero components,
and the variance iS there will be an appreciable probability that a large number

Cm
P

2 of the matrix elements Mji are zero or very small. In the re-
var (x.(r)) =c2y X,ZPi~ EqJP)q%(PO)xJ(P)). (42) call, the contribution of these elements is small and, there-

_ / p fore, we may guess that without causing appreciable errors,
(Note Pi2=Pi.) all elements smaller than a certain limit could be deleted

from the set of associators. Now we can stochastically gen-
V. AUTO-ASSOCIATIVE CORRELATION MATRIX MEMORY erate a corresponding amount of new connections (associa-
There is nothing in the foregoing which would restrict us tors) and obviously we will have found new large matrix

from implementing an auto-associative memory in which the elements of the complete correlation matrix. Using these for
pattern itself or any part of it could be used as the key. In memorization and recall, we can deduce, e.g., from Example
this case during memorization q (p) = x (P) and thus 5 that the relative noise will have been reduced. By intermit-

tently breaking old connections and generating new ones

Mxq = c E x(P)x(P)T (43) during the memorization, unsupervised learning in the
p stochastically generated memory takes place. Achievable re-

is the correlation matrix. Every memory element is now con- sults depend strongly on the statistics of key vectors.
nected to two different elements of an input field. (The key Example 5: Let us take an illustrative simplified example,
and data fields are thus mixed up.) During recall, q ) is re- the memorization and recall of a repeating single pattern.
placed by a part of x (Po). The projection parameters Pi The unnormalized correlation matrix of a single pattern is
are now 1 for the known elements of the key pattern and (with c= 1)
otherwise 0. Then for the CCMM Mxq xqT. (48)

(r) = c ]xm(P).xP)x(Po) (44) Let us assume that qi, xjC IO, I} and denote the relative
p i=1 fraction of l's in the key by ax and in the data by d. We shall

inspect the recall of a component xj:
For the randomly generated ICMM

m

= C E E PiZijX (P)X/P)Xi(P,) (45)
p i=l

In the beginning,
Now we obtain for the recalled data in ICMM the expecta-

In th =emining
tion value E(tj) = ma,xj (50)

m var (tj) = maqix. (51)
E(Sc/r)) = CA P.2(Xi(p°,)) 2X/p°)EGW(r)) *i=1 (Note that <=xje{O, l}.)

m Now we start a process of rejecting all Mji= 0. For further
+ cm E Pixi(P)x/(P)xi(Po) (46) simplicity, we clear the contents of the surviving Mji, gen-

P5p j' erate new connections, and repeat the memorization of

and the variance (q, x). At the Pth stage of this process, denote the number of
associators with the contents Mji-1 by -y" (,y'- osas). At the

var (x .(r)) = c 2puE P ( (iCP+ l)th stage, we reject s-_yv associators and generate an
=

\

p equal number of new ones. Of these, a03(s-'Yr) will hit places
at which the complete correlation matrix would have 1's.

where Therefore,

n(n -1)+l _gV =c43(s-y,I) (52)

The solution of (52) reads for M processes,
s Number of associators. z - [1(1 - at3)M ]S- (53
n Number of input elements.

If all memorized patterns, or at least the key parts of them
are orthogonal, we can recall a pattern by its part with true lim z,M = S. (54)
conformity, and the noise is given by (47). Unless the key
parts of the patterns are orthogonal, thlere will be biased Finally, after infinitely many renewing processes, all asso-
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ciators will have connections for which the complete correla- 0 0 0 0 000 0 0D0 00

tion matrix would have l's. There are now s elements dis- 0 0 0 0 0 0 0 0 0 0
000 00 00 0 0 0tributed over a4mn possible places corresponding to com- 0D0 000 %o0 00 I D

ponents of q that are 1. Therefore, the mean and variance of 0 0 0 0g 0o 00

a recalled pattern at j are, respectively, (a) (e)
000 000 000 000 000 000 000 000

sS 0 0 0 0 0 0 0

E(sx1) = am xi= -xi (55) 0 0 0 0 0 0

cxamn On 0 0 0 0 0 0 0

0 0 0 0 0 0

S 000 000 000 000 000 000 000 000

var (x,) = X-x. (56) (b) (f)
On ~~~~~~~~000 0 0 00 0

0 00 0 0 00
Thus, comparing (50), (51), (55), and (56), we see that the 0 0 0 0 00 00

00 0 0 0 0 0

relative standard deviation has been reduced by a factor 0000 000 0 00 0000
-V/a:. This example shows us that the incomplete correlation 0 0 00 0
matrix memory is capable of unsupervised learning, and the (c) (g)

result is the better, the more zeros there are in Mxq. On the 0 0 0 00 0 0 0

000 00 00
o0

other hand, the speed of learning is slower in this case. 00 00 0D0 0 0 0 0
0 0 00 00 00

00 00 00 000 000VII. USE OF CORRELATION MATRIX MEMORIES 0 0 0 0

FOR PATTERN CLASSIFICATION (d) (h)

By the classification of patterns we mean that a set of pat- Fig. 2. (a) First memorized pattern, shown in a retina of 140 elements.
terns consists of subsets each of which is mapped on a single Signals denoted by the symbol 0 have the value I whereas signals

element. Classification with the aid of correlation matrix denoted by blanks have the value 0. (b) Second memorized pattern,
the memory traces of which have been superimposed on those of

memories means here that we assign one element j in the x case (a). (c) First key pattern used for recall when the same symbols
field to each occurring class and the patterns to be classified as in case (a) have been used. (d) Result of recall when all x (r)>5 5

are used aste ecosTemeoitugtbsshave been denoted by the symbol X, and recalled signals smaller
are used as the q vectors. The memory iS "taught" by assign- than 5.5 by a blank. (e) Second key pattern used for recall when the
ing a value Xh= I for the element h if the exposed figure be- same symbols as in case (a) have been used. (f) Result of recall when
longs to the class h, but 0 otherwise (supervised learning). the same symbols as in case (d) have been used. (g) Third key pattern

During recalling a patternqisusedathekeyawhich is uncorrelated with the memorized items. (h) Result of recall
During recalling, a pattern q iS used as the key and x ls when the same symbols as in case (d) have been used.
formed as before. The class h is now found by the decision

xh(r) max x (r) (57) from memorized items is present. The missing portions of
i the recalled patterns in Fig. 2(d) and (f) are due to the in-

VIII. COMPUTER SIMULATIONS completeness of the correlation matrix. This effect manifests

The noise level of recalled patterns, due to the random itself in all finite networks but its contribution decreases

structure of the associative network, can easily be computed with increasing size of the memory.

from (18), (34), (42), and (47) for any type of memorized pat- ACKNOWLEDGMENT
terns. It might be desirable to have a direct demonstration of M ENT
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Dynamic Memories with Enhanced Data Access
HAROLD S. STONE, MEMBER, IEEE

Abstract-Dynamic memories are commonly constructed as circulating although there is no constraint that forces such memories

shift registers, and thus have access times that are proportional to the to use the interconnection pattern.
size of memory. When each word in a dynamic memory is connected to r cyclic
words, r > 2, access time can be proportional to the base r logarithm of Given the constraint that data must be moved continu-
the size of memory. A memory that achieves minimum access time for ously in a dynamic memory, the cyclical structure of the
r = 2 is described. The memory can also be operated in an efficient binary
search mode. Slight variations of the interconnection patterns lead to a

m

memory that is well suited for FFT and certain matrix computations. a large storage capacity and a short access time. In a cyclic
memory, the access time to a randomly selected item in-

Index Terms-Access time, binary search, dynamic memories, perfect creases liearl ewt tizeto t m emory. ithisa
' ' ' ~~~~~~creases linearly with the size of the memory. In this paper

shuffle, shift register memories.
we investigate dynamic memories in which access time in-

1. INTRODUCTION creases logarithmically with the size of memory. In particu-

I N SOME MEMORY technologies, the storage medium lar, we embed an interconnection pattern called the perfect
inherently requires that there be a continuous circula- shuffle into the memory, and dispense with the more usual
tion of data. Examples of such memories include mag- cyclic interconnection pattern. For the purposes of this

netic drums and disks, MOS shift registers, and magnetic paper we assume it takes a unit time to move data from one
bubble memories. In this paper, we shall refer to such position to the next position in a cyclic memory, and that
memories as dynamic memories, it also takes a unit time to permute data in memories that
For practical reasons, data movement in dynamic mem- use noncyclic interconnections such as the perfect shuffle.

ories is normally cyclic. In the case of the magnetic drum, This assumption is invalid for technologies in which non-
data are stored on the circumference of the drum, so that cyclic interconnections require data transfer times somewhat
the rotation of the drum relative to a fixed head produces longer than a unit time due to larger physical transfer dis-

the cyclical movement of the data. MOS shift register mem- tances.
ories are commonly constructed as circulating shift registers In Section II we derive the lower bound on access time

that can be achieved in dynamic memories with enhanced
interconnections, in Section I1I, we describe a dynamic
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