
A Simple Weight Decay Can Improve
Generalization

Anders Krogh·
CONNECT, The Niels Bohr Institute

Blegdamsvej 17
DK-2100 Copenhagen, Denmark

krogh@cse.ucsc.edu

John A. Hertz
Nordita

Blegdamsvej 17
DK-2100 Copenhagen, Denmark

hertz@nordita.dk

Abstract

It has been observed in numerical simulations that a weight decay can im­
prove generalization in a feed-forward neural network. This paper explains
why. It is proven that a weight decay has two effects in a linear network.
First, it suppresses any irrelevant components of the weight vector by
choosing the smallest vector that solves the learning problem. Second, if
the size is chosen right, a weight decay can suppress some of the effects of
static noise on the targets, which improves generalization quite a lot. It
is then shown how to extend these results to networks with hidden layers
and non-linear units. Finally the theory is confirmed by some numerical
simulations using the data from NetTalk.

1 INTRODUCTION

Many recent studies have shown that the generalization ability of a neural network
(or any other 'learning machine') depends on a balance between the information in
the training examples and the complexity of the network, see for instance [1,2,3].
Bad generalization occurs if the information does not match the complexity, e.g.
if the network is very complex and there is little information in the training set.
In this last instance the network will be over-fitting the data, and the opposite
situation corresponds to under-fitting.

·Present address: Computer and Information Sciences, Univ. of California Santa Cruz,
Santa Cruz, CA 95064.

950

A Simple Weight Decay Can Improve Generalization 951

Often the number of free parameters, i. e. the number of weights and thresholds, is
used as a measure of the network complexity, and algorithms have been developed,
which minimizes the number of weights while still keeping the error on the training
examples small [4,5,6]. This minimization of the number of free parameters is not
always what is needed.

A different way to constrain a network, and thus decrease its complexity, is to limit
the growth of the weights through some kind of weight decay. It should prevent the
weights from growing too large unless it is really necessary. It can be realized by
adding a term to the cost function that penalizes large weights,

1 "" 2 E(w) = Eo(w) + 2A L..J Wi'

i

(1)

where Eo is one's favorite error measure (usually the sum of squared errors), and
A is a parameter governing how strongly large weights are penalized. w is a vector
containing all free parameters of the network, it will be called the weight vector. If
gradient descend is used for learning, the last term in the cost function leads to a
new term -AWi in the weight update:

. fJEo \
Wi ex: --fJ - ",Wi·

Wi
(2)

Here it is formulated in continuous time. If the gradient of Eo (the 'force term')
were not present this equation would lead to an exponential decay of the weights.

Obviously there are infinitely many possibilities for choosing other forms of the
additional term in (1), but here we will concentrate on this simple form.

It has been known for a long time that a weight decay of this form can improve
generalization [7], but until now not very widely recognized. The aim of this paper
is to analyze this effect both theoretically and experimentally. Weight decay as a
special kind of regularization is also discussed in [8,9] .

2 FEED-FORWARD NETWORKS

A feed-forward neural network implements a function of the inputs that depends
on the weight vector w, it is called fw. For simplicity it is assumed that there is
only one output unit. When the input is e the output is fw (e) . Note that the input
vector is a vector in the N-dimensional input space, whereas the weight vector is a
vector in the weight space which has a different dimension W.

The aim of the learning is not only to learn the examples, but to learn the underlying
function that produces the targets for the learning process. First, we assume that
this target function can actually be implemented by the network . This means there
exists a weight vector u such that the target function is equal to fu . The network
with parameters u is often called the teacher, because from input vectors it can
produce the right targets . The sum of squared errors is

p

Eo(w) = ~ 2:[fu(e Jl) - fw(eJl)]2,
JI=l

(3)

952 Krogh and Hertz

where p is the number of training patterns. The learning equation (2) can then be
written

Wi <X 2)fu(eJl) - fw(eJl)]&~:~) - AWj.
Jl •

(4)

Now the idea is to expand this around the solution u, but first the linear case will
be analyzed in some detail.

3 THE LINEAR PERCEPTRON

The simplest kind of 'network' is the linear perceptron characterized by

(5)

where the N-l/2 is just a convenient normalization factor. Here the dimension of
the weight space (W) is the same as the dimension of the input space (N) .

The learning equation then takes the simple form

Defining

and

it becomes

Wi <X L N- 1 L[Uj - Wj]ejer - AWi.
Jl j

Aij = N- 1 L ere;
Jl

Vj <X - L AijVj + A(Uj - Vi)'
j

Transforming this equation to the basis where A is diagonal yields

vr <X -(Ar + A)Vr + AUr,

(6)

(7)

(8)

(9)

(10)

where Ar are the eigenvalues of A, and a subscript r indicates transformation to this
basis. The generalization error is defined as the error averaged over the distribution
of input vectors

N- 1 L VjVj(eiej)€
ij

(11)

Here it is assumed that (eiej)€ = 6ij . The generalization error F is thus proportional
to Iv12 , which is also quite natural.

The eigenvalues of the covariance matrix A are non-negative, and its rank can easily
be shown to be less than or equal to p. It is also easily seen that all eigenvectors
belonging to eigenvalues larger than 0 lies in the subspace of weight space spanned

A Simple Weight Decay Can Improve Generalization 953

by the input patterns e, ... , e. This subspace, called the pattern subspace, will
be denoted Vp , and the orthogonal subspace is denoted by V.l. When there are
sufficiently many examples they span the whole space, and there will be no zero
eigenvalues. This can only happen for p 2:: N.

When A = 0 the solution to (10) inside Vp is just a simple exponential decay to
Vr = o. Outside the pattern subspace Ar = 0, and the corresponding part of Vr will
be constant. Any weight vector which has the same projection onto the pattern
subspace as u gives a learning error O. One can think of this as a 'valley' in the
error surface given by u + V/.
The training set contains no information that can help us choose between all these
solutions to the learning problem. When learning with a weight decay A > 0, the
constant part in V/ will decay to zero asymptotically (as e->'t, where t is the time).
An infinitesimal weight decay will therefore choose the solution with the smallest
norm out of all the solutions in the valley described above. This solution can be
shown to be the optimal one on average.

4 LEARNING WITH AN UNRELIABLE TEACHER

Random errors made by the teacher can be modeled by adding a random term 11 to
the targets:

(12)

The variance of TJ is called u 2 , and it is assumed to have zero mean. Note that these
targets are not exactly realizable by the network (for Q' > 0), and therefore this is
a simple model for studying learning of an unrealizable function.

With this noise the learning equation (2) becomes

Wi ex L:(N- 1 L: Vjf.j + N- 1/ 211/J)f.f - AWi· (13)
/J j

Transforming it to the basis where A is diagonal as before,

vr ex -(Ar + A)Vr + AUr - N- 1/ 2 L 11/Jf.~· (14)
/J

The asymptotic solution to this equation is

AUr - N-l/ 2 L/J TJ/Jf.~
Vr = A + Ar . (15)

The contribution to the generalization error is the square of this summed over all
r. If averaged over the noise (shown by the bar) it becomes for each r

(16)

The last expression has a minimum in A, which can be found by putting the deriva­
tive with respect to A equal to zero, A~Ptimal = u 2 /u;. Remarkably it depends only

954 Krogh and Hertz

Figure 1: Generalization error as a
function of Q' = pIN. The full line is
for A = u 2 = 0.2, and the dashed line
for A = O. The dotted line is the gener­
alization error with no noise and A = O.

LI..

.,
o~ __________ ~ __________ ~
o 1 2

pIN

on u and the variance of the noise, and not on A. If it is assumed that u is random
(16) can be averaged over u. This yields an optimal A independent of r,

u 2
Aoptlmai = ---;;-,

u~

where u2 is the average of N- 1 IuI 2 .

(17)

In this case the weight decay to some extent prevents the network from fitting the
nOIse.

From equation (14) one can see that the noise is projected onto the pattern subspace.
Therefore the contribution to the generalization error from V/ is the same as before,
and this contribution is on average minimized by a weight decay of any size.

Equation (17) was derived in [10] in the context of a particular eigenvalue spectrum.
Figure fig. 1 shows the dramatic improvement in generalization error when the
optimal weight decay is used in this case, The present treatment shows that (17)
is independent of the spectrum of A.

We conclude that a weight decay has two positive effects on generalization in a
linear network: 1) It suppresses any irrelevant components of the weight vector by
choosing the smallest vector that solves the learning problem. 2) If the size is chosen
right, it can suppress some of the effect of static noise on the targets .

5 NON-LINEAR NETWORKS

It is not possible to analyze a general non-linear network exactly, as done above
for the linear case. By a local linearization, it is however, possible to draw some
interesting conclusions from the results in the previous section.

Assume the function is realizable, f = fu. Then learning corresponds to solving the
p equations

(18)

A Simple Weight Decay Can Improve Generalization 955

in W variables, where W is the number of weights. For p < W these equations
define a manifold in weight space of dimension at least W - p. Any point W on this
manifold gives a learning error of zero, and therefore (4) can be expanded around
w. Putting v = W - w, expanding fw in v, and using it in (4) yields

Vi ex - L (8f;~:Jj») v/9f;~:Jj) + A(Wi - vd
Jj ,1

- LAij(W)Vj - AVi + AWj
j

(The derivatives in this equation should be taken at iV.)

The analogue of A is defined as

A··(-) = L 8fw(eJj) 8fw(eJj)
'1 w - ~ :::l •

uW' uW' Jj , 1

(19)

(20)

Since it is of outer product form (like A) its rank R(in) ~ min{p, W}. Thus when
p < W, A is never of full rank. The rank of A is of course equal to W minus the
dimension of the manifold mentioned above.

From these simple observations one can argue that good generalization should not
be expected for p < W. This is in accordance with other results (cf. [3]), and with
current 'folk-lore'. The difference from the linear case is that the 'rain gutter' need
not be (and most probably is not) linear, but curved in this case. There may in fact
be other valleys or rain gutters disconnected from the one containing u. One can
also see that if A has full rank, all points in the immediate neighborhood of W = u
give a learning error larger than 0, i.e. there is a simple minimum at u.

Assume that the learning finds one of these valleys. A small weight decay will
pick out the point in the valley with the smallest norm among all the points in the
valley. In general it can not be proven that picking that solution is the best strategy.
But, at least from a philosophical point of view, it seems sensible, because it is (in a
loose sense) the solution with the smallest complexity-the one that Ockham would
probably have chosen.

The value of a weight decay is more evident if there are small errors in the targets.
In that case one can go through exactly the same line of arguments as for the linear
case to show that a weight decay can improve generalization, and even with the
same optimal choice (17) of A. This is strictly true only for small errors (where the
linear approximation is valid).

6 NUMERICAL EXPERIMENTS

A weight decay has been tested on the NetTalk problem [11]. In the simulations
back-propagation derived from the 'entropic error measure' [12] with a momentum
term fixed at 0.8 was used. The network had 7 x 26 input units, 40 hidden units and
26 output units. In all about 8400 weights. It was trained on 400 to 5000 random
words from the data base of around 20.000 words, and tested on a different set of
1000 random words. The training set and test set were independent from run to
run .

956 Krogh and Hertz

1.2
0.26

0.24

0.22
f/)

1.0 0 0.20 w
0.18

0.16
lL. 0.14

0.8 0 20 104 40 104

P

. .

0.6

. --

o

Figure 2: The top full line corresponds to the generalization error after 300 epochs
(300 cycles through the training set) without a weight decay. The lower full line is
with a weight decay. The top dotted line is the lowest error seen during learning
without a weight decay, and the lower dotted with a weight decay. The size of the
weight decay was .A = 0.00008.
Insert : Same figure except that the error rate is shown instead of the squared error.
The error rate is the fraction of wrong phonemes when the phoneme vector with
the smallest angle to the actual output is chosen, see [11].

Results are shown in fig. 2. There is a clear improvement in generalization error
when weight decay is used. There is also an improvement in error rate (insert of
fig. 2), but it is less pronounced in terms of relative improvement. Results shown
here are for a weight decay of .A = 0.00008. The values 0.00005 and 0.0001 was also
tried and gave basically the same curves.

7 CONCLUSION

It was shown how a weight decay can improve generalization in two ways: 1) It
suppresses any irrelevant components of the weight vector by choosing the smallest
vector that solves the learning problem. 2) If the size is chosen right, a weight decay
can suppress some of the effect of static noise on the targets. Static noise on the
targets can be viewed as a model of learning an unrealizable function. The analysis
assumed that the network could be expanded around an optimal weight vector, and

A Simple Weight Decay Can Improve Generalization 957

therefore it is strictly only valid in a little neighborhood around that vector.

The improvement from a weight decay was also tested by simulations. For the
NetTalk data it was shown that a weight decay can decrease the generalization
error (squared error) and also, although less significantly, the actual mistake rate
of the network when the phoneme closest to the output is chosen.

Acknowledgements

AK acknowledges support from the Danish Natural Science Council and the Danish
Technical Research Council through the Computational Neural Network Center
(CONNECT).

References

[1] D.B. Schwartz, V.K. Samalam, S.A. Solla, and J.S. Denker. Exhaustive learn­
ing. Neural Computation, 2:371-382, 1990.

[2] N. Tishby, E. Levin, and S.A. Solla. Consistent inference of probabilities in
layered networks: predictions and generalization. In International Joint Con­
ference on Neural Networks, pages 403-410, (Washington 1989), IEEE, New
York, 1989.

[3] E.B. Baum and D. Haussler. What size net gives valid generalization? Neural
Computation, 1:151-160, 1989.

[4] Y. Le Cun, J .S. Denker, and S.A. Solla. Optimal brain damage. In D.S. Touret­
zky, editor, Advances in Neural Information Processing Systems, pages 598-
605, (Denver 1989), Morgan Kaufmann, San Mateo, 1990.

[5] H.H. Thodberg. Improving generalization of neural networks through pruning.
International Journal of Neural Systems, 1:317-326, 1990.

[6] D.H. Weigend, D.E. Rumelhart, and B.A. Huberman. Generalization by
weight-elimination with application to forecasting. In R.P. Lippmann et ai,
editors, Advances in Neural Information Processing Systems, page 875-882,
(Denver 1989), Morgan Kaufmann, San Mateo, 1991.

[7] G.E. Hinton. Learning translation invariant recognition in a massively parallel
network. In G. Goos and J. Hartmanis, editors, PARLE: Parallel Architec­
tures and Languages Europe. Lecture Notes in Computer Science, pages 1-13,
Springer-Verlag, Berlin, 1987.

[8] J .Moody. Generalization, weight decay, and architecture selection for nonlin­
ear learning systems. These proceedings.

[9] D. MacKay. A practical bayesian framework for backprop networks. These
proceedings.

[10] A. Krogh and J .A. Hertz. Generalization in a Linear Perceptron in the Presence
of Noise. To appear in Journal of Physics A 1992.

[11] T.J. Sejnowski and C.R. Rosenberg. Parallel networks that learn to pronounce
english text . Complex Systems, 1:145-168,1987.

[12] J .A. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley, Redwood City, 1991.

