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Introduction

0

0.0 Readers
In writing this we had in mind three kinds of readers. First, there 
are many new results that will interest specialists concerned with 
‘‘pattern recognition,” “ learning machines,” and “threshold 
logic.” Second, some people will enjoy reading it as an essay in 
abstract mathematics; it may appeal especially to those who would 
like to see geometry return to topology and algebra. We ourselves 
share both these interests. But we would not have carried the work 
as far as we have, nor presented it in the way we shall, if it were 
not for a different, less clearly defined, set of interests.

The goal of this study is to reach a deeper understanding of some 
concepts we believe are crucial to the general theory of computa
tion. We will study in great detail a class of computations that 
make decisions by weighing evidence. Certainly, this problem is 
of great interest in itself, but our real hope is that understanding 
of its mathematical structure will prepare us eventually to go 
further into the almost unexplored theory of parallel computers.

The people we want most to speak to are interested in that general 
theory of computation. We hope this includes psychologists and 
biologists who would like to know how the brain computes 
thoughts and how the genetic program computes organisms. We 
do not pretend to give answers to such questions—nor even to 
propose that the simple structures we shall use should be taken as 
“models” for such processes. Our aim—we are not sure whether 
it is more modest or more ambitious—is to illustrate how such a 
theory might begin, and what strategies of research could lead to 
it.
It is for this third class of readers that we have written this intro
duction. It may help those who do not have an immediate involve
ment with it to see that the theory of pattern recognition might be 
worth studying for other reasons. At the same time we will set out 
a simplified version of the theory to help readers who have not 
had the mathematical training that would make the later chapters 
easy to read. The rest of the book is self-contained and anyone 
who hates introductions may go directly to Chapter 1.

0.1 Real, Abstract, and Mythological Computers
We know shamefully little about our computers and their compu
tations. This seems paradoxical because, physically and logically.
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computers are so lucidly transparent in their principles of opera
tion. Yet even a school boy can ask questions about them that 
today’s “computer science” cannot answer. We know' very little, 
for instance, about how much computation a job should require.

As an example, consider one of the most frequently performed 
computations: solving a set o f linear equations. This is important 
in virtually every kind of scientific work. There are a variety of 
standard programs for it, which are composed of additions, mul
tiplications, and divisions. One would suppose that such a simple 
and important subject, long studied by mathe.maticians, would by 
now' be thoroughly understood. But we ask, How' many arithme
tic steps are absolutely required? How’ does this depend on the 
amount of computer memory? How' much time can we save if we 
have two (or n) identical computers? Every computer scientist 
“knows” that this computation requires something of the order of 

multiplications for n equations, but even if this be true no one 
knows—at this writing—how to begin to prove it.

Neither the outsider nor the computation specialist seems to 
recognize how primitive and how empirical is our present state of 
understanding of such matters. We do not know how' much the 
speed of computations can be increased, in general, by using 
“parallel” as opposed to “serial”—or “analog” as opposed to 
“digital”—machines. We have no theory of the situations in 
which “associative” memories will justify their higher cost as 
compared to “addressed” memories. There is a great deal of folk
lore about this sort of contrast, but much of this folklore is mere 
superstition; in the cases we have studied carefully, the common 
beliefs turn out to be not merely “ unproved”; they are often 
drastically wrong.

The immaturity show n by our inability to answer questions of this 
kind is exhibited even in the language used to formulate the ques
tions. Word pairs such as “parallel” vs. “serial:” “local” vs. 
“global,” and “digital” vs. “analog” are used as if they referred 
to well-defined technical concepts. Even when this is true, the 
technical meaning varies from user to user and context to con
text. But usually they are treated so loosely that the species of 
computing machine defined by them belongs to mythology rather 
than science.
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Now we do not mean to suggest that these are mere pseudo- 
problems that arise from sloppy use of language. This is not a 
book of “therapeutic semantics” ! For there is much content in 
these intuitive ideas and distinctions. The problem is how to 
capture it in a clear, sharp theory.

0.2 Mathematical Strategy
We are not convinced that the time is ripe to attempt a very 
general theory broad enough to encompass the concepts we have 
mentioned and others like them. Good theories rarely develop 
outside the context of a background of well-understood real prob
lems and special cases. Without such a foundation, one gets either 
the vacuous generality of a theory with more definitions than 
theorems—or a mathematically elegant theory with no applica
tion to reality.

Accordingly, our best course would seem to be to strive for a very 
thorough understanding of well-chosen particular situations in 
which these concepts are involved.

We have chosen in fact to explore the properties of the simplest 
machines we could find that have a clear claim to be “parallel”— 
for they have no loops or feedback paths—yet can perform 
computations that are nontrivial, both in practical and in mathe
matical respects.

Before we proceed into details, we would like to reassure non
mathematicians who might be frightened by what they have 
glimpsed in the pages ahead. The mathematical methods used are 
rather diverse, but they seldom require advanced knowledge. We 
explain most of that which goes beyond elementary algebra and 
geometry. Where this was not practical, we have marked as op
tional those sections we feel might demand from most readers 
more mathematical effort than is warranted by the topic’s role in 
the whole structure. Our theory is more like a tree with many 
branches than like a narrow high tower of blocks; in many cases 
one can skip, if trouble is encountered, to the beginning of the 
following chapter.

The reader of most modern mathematical texts is made to work 
unduly hard by the authors’ tendency to cover over the intel
lectual tracks that lead to the discovery of the theorems. We have
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tried to leave visible the lines of progress. We should have liked 
to go further and leave traces of all the false tracks we followed; 
unfortunately there were too many! Nevertheless we have oc
casionally left an earlier proof even when we later found a 
“better’' one. Our aim is not so much to prove theorems as to 
give insight into methods and to encourage research. We hope 
this will be read not as a chain of logical deductions but as a 
mathematical novel where characters appear, reappear, and 
develop.

0.3 Cybernetics and Romanticism
The machines we will study are abstract versions of a class of 
devices known under various names; we have agreed to use the 
name “perceptron” in recognition of the pioneer work of Frank 
Rosenblatt. Perceptrons make decisions—determine whether or 
not an event fits a certain “pattern”—by adding up evidence 
obtained from many small experiments. This clear and simple 
concept is important because most, and perhaps all, more com
plicated machines for making decisions share a little of this char
acter. Until we understand it very thoroughly, we can expect to 
have trouble with more advanced ideas. In fact, we feel that the 
critical advances in many branches of science and mathematics 
began with good formulations of the “ linear” systems, and these 
machines are our candidate for beginning the study of “parallel 
machines” in general.
Our discussion will include some rather sharp criticisms of earlier work 
in this area. Perceptrons have been widely publicized as “pattern recog
nition” or “learning” machines and as such have been discussed in a 
large number of books, journal articles, and voluminous “reports.” Most 
of this writing (some exceptions are mentioned in our bibliography) is 
without scientific value and we will not usually refer by name to the 
works we criticize. The sciences of computation and cybernetics began, 
and it seems quite rightly so, with a certain flourish of romanticism. They 
were laden with attractive and exciting new ideas which have already 
borne rich fruit. Heavy demands of rigor and caution could have held 
this development to a much slower pace; only the future could tell which 
directions were to be the best. We feel, in fact, that the solemn experts 
who most complained about the “exaggerated claims” of the cybernetic 
enthusiasts were, in the balance, much more in the wrong. But now the 
time has come for maturity, and this requires us to match our speculative 
enterprise with equally imaginative standards of criticism.
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0.4 Parallel Computation
The simplest concept of parallel computation is represented by 
the diagram in Figure 0.1. The figure shows how one might com
pute a function \p(^) in two stages. First we compute inde
pendently of one another a set of functions ip\(X), <p2(X \  . . . ,  
(Pn(X) and then combine the results by means of a function Q of a? 
arguments to obtain the value of yp.

To make the definition meaningful—or, rather, productive—one 
needs to place some restrictions on the function i2 and the set ^  of
functions (p\,(P2. __ If we do not make restrictions,we do not get
a theory: any computation \p could be represented as a parallel 
computation in various trivial ways, for example, by making one 
of the (f's be \p and letting Q do nothing but transmit its result. 
We will consider a variety of restrictions, but first we will give a 
few concrete examples of the kinds of functions we might want \p 
to be.

0.5 Some Geometric Patterns; Predicates
Let R be the ordinary two-dimensional Euclidean plane and let X 
be a geometric figure drawn on R. X  could be a circle, or a pair of 
circles, or a black-and-white sketch of a face. In general we will 
think of a figure X  as simply a subset of the points of R (that is, 
the black points).
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Let \p{X) be a function (of figures X on R) that can have but two 
values. We usually think of the two values of ̂  as 0 and 1. But by 
taking them to be false and true we can think of yp{X) as a 
predicate, that is, a variable statement whose truth or falsity de
pends on the choice of X. We now give a few examples of predi
cates that will be of particular interest in the sequel.

^CIRCl.l(̂ ) —
1 if the figure A" is a circle,
0 if the figure is not a circle;

o
O

O O o 0
1  1 0 0 o o

/ (Y\ J 1 if ̂  is a convex figure, 
coNVbx ) |o  if A'is not a convex figure;

• % o A

CONNbCTbl) (^) = 1 if A' is a connected figure, 
0 otherwise.
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We will also use some very much simpler predicates.* The very 
simplest predicate “ recognizes” when a particular single point is 
in X: let /7 be a point in the plane and define

= 1 if /7 is in Xy 
0 otherwise.

Finally we will need the kind of predicate that tells when a par
ticular set /i is a subset of X\

\ 0 o
, . if .4 C A', 

 ̂ “ 1 0 otherwise.

Om% r i i i i i  uwmnft of
We stort by observing an important difference between ^ connected 
and CONVEX- To bring it out we state a fact about convexity:

DetMlIaii: A set AT fails to be convex if and only if there exist 
three points such that q is in the line segment joining p and r, and 

p is in Xy 
q is not in Xy 
r i s in AT.

Thus we can test for convexity by examining triplets of points. If 
all the triplets pass the test then X  is convex; if any triplet fails 
(that is, meets all conditions above) then X  is not convex. Be
cause all the tests can be done independently, and the final decision 
made by such a logically simple procedure—unanimity of all the 
tests—we propose this as a first draft of our definition of “ local.”

♦We will use ‘V ” instead of ‘V ” for those very simple predicates that will be 
combined later to make more complicated predicates. No absolute logical distinc
tion is implied.
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Definition: A predicate yp is conjunctively local of order k if it can 
be computed, as in §0.4, by a set 4> of predicates such that

Each (p depends upon no more than k points of R\

1 if (f{X) = 1 for every in i>, 
0 otherwise.HX)  =

Example: \ivoNVEx conjunctively local of order 3.

The property of a figure being connected might not seem at first 
to be very different in kind from the property of being convex. 
Yet we can show that:

Theorem 0.6.1: connected not conjunctively local of any order.

proof: Suppose that connected has order k. Then to distinguish 
between -the two figuros —

and

Yo Y,
suck +U.-V %(Xo) becaose

there must be some wh4ch4»iri vnhrin 0 is not con
nected. All \  have value 1 on Yi, which is connected. Now, 
can depend on at most k points, so there must be at least one 
middle square, say 5̂ , that does not contain one of these points. 
But then, on the figure Y2,

ii Y2

which is connected, vj^must have the same value, 0, that it has on 
Yo. But this cannot be, for all v?'s must have value 1 on X>.

Of course, if some is allowed to look at all the points of R then 
ĈONNECTED can be computed, but this would go against any con

cept of the (̂ ’s as “local’' functions.
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0.7 Some Other Concepts of Local
We have accumulated some evidence in favor of “conjunctively 
local" as a geometrical and computationally meaningful property 
of predicates. But a closer look raises doubts about whether it is 
broad enough to lead to a rich enough theory.

Readers acquainted with the mathematical methods of topology 
will have observed that “conjunctively local" is similar to the 
notion of “ local property" in topology. However, if we were to 
pursue the analogy, we would restrict the <̂’s to depend upon all 
the points inside small circles rather than upon fixed numbers of 
points. Accordingly, we will follow two parallel paths. One is 
based on restrictions on numbers o f points and in this case we shall 
talk of predicates of limited order. The other is based on restric
tions of distances between the points, and here we shall talk of 
diameter-limited predicates. Despite the analogy with other im
portant situations, the concept of local based on diameter limita
tions seems to be less interesting in our theory—although one 
might have expected quite the opposite.

More serious doubts arise from the narrowness of the “conjunc
tive" or “unanimity" requirement. As a next step toward ex
tending our concept of locals let us now try to separate essential 
from arbitrary features of the definition of conjunctive localness. 
The intention of the definition was to divide the computation of a 
predicate xp into two stages:

Stage I:
The computation o f many properties or features ip a which are each 
easy to compute, either because each depends only on a small part o f 
the whole input space R, or because they are very simple in some 
other interesting way.
Stage II:
A decision algorithm Q that defines by combining the results o f the 
Stage I computations. For the division into two stages to be mean- 
ingful, this decision function must also be distinctively homogeneous, 
or easy to program, or easy to compute.

The particular way this intention was realized in our example 
ĈONVEX was rather arbitrary. In Stage I we made sure that the 

ipaS were easy to compute by requiring each to depend only upon 
a few points of R. In Stage II we used just about the simplest im
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aginable decision rule; if the (p's are unaminous we accept the 
figure; we reject it if even a single (p disagrees.
We would prefer to be able to present a perfectly precise defini
tion of our intuitive local-vs.-global concept. One trouble is that 
phrases like “easy-to-compute” keep recurring in our attempt to 
formulate it. To make this precise would require some scheme for 
comparing the complexity of different computation procedures. 
Until we find an intuitively satisfactory scheme for this, and it 
doesn’t seem to be around the corner, the requirements of both 
Stage 1 and Stage II will retain the heuristic character that makes 
formal definition difficult.
From this point on, we will concentrate our attention on a partic
ular scheme for Stage II—“weighted voting,” or “ linear combina
tion” of the predicates of Stage I. This is the so-called perceptron 
scheme, and we proceed next to give our final definition.

0.8 Perceptrons
Let4> = \(pu (p2, . ..  , (Pn]ht2i family of predicates. We will say that 

\l/ is linear with respect to 4>

if there exists a number 6 and a set of numbers |a^,, . . . ,  a^J
such that \p{X) = 1 if and only if (P\{X) + • • • -f a^^(p„{X) > 6. 
The number 0 is called the threshold and the a s  are called the co
efficients or weights. (See Figure 0.2). We usually write more com
pactly

yp(X) = 1 if and only if ̂  a^ip(X) > 6.
ifif̂
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The intuitive idea is that each predicate of is supposed to pro
vide some evidence about whether ^ is true for any figure X, If» on 
the whole, ^(A') is strongly correlated with ip(X) one expects 
to be positive, while if the correlation is negative so would be a^. 
The idea of correlation should not be taken literally here, but only 
as a suggestive analogy.

Example: Any conjunctively local predicate can be expressed in 
this form by choosing  ̂ = -  I and = -  I for every ip. For then _  O r  co ^ lj w r i ’I'C (
2 ^ ( - i ) ^ ( a') > - I  ^ f ( x )  = o , o , r Z ^ C K ) < i ,

exactly when <p(X) = 0 for every <p in <i>. (The senses of true and 
FALSE thus have to be reversed for the <̂’s, but this isn’t im- 
portant.^l
Example: Consider the seesaw of Figure 0.3 and let X be an ar
rangement of pebbles placed at some of the equally spaced points 
\P\, •., Pi\’ Then R has seven points. Define ifi{X) = I if and 
only if X  contains a pebble at the iih point. Then we can express 
the predicate

“The seesaw will tip to the right’’ 

by the formula

X u  -  4)v»(X) > 0.

where  ̂ = Oanda,  = (/-4 ).

There are a number of problems concerning the possibility of infinite 
sums and such matters when we apply this concept to recognizing pat
terns in the Euclidean plane. These issues are discussed extensively 
in the text, and we want here only to reassure the mathematician that 
the problem will be faced. Except when there is a good technical reason 
to use infinite sums (and this is sometimes the case) we will make the 
problem finite by two general methods. One is to treat the retina R as
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made up of discrete little squares (instead of points) and treat as equiva
lent figures that intersect the same squares. The other is to consider 
only bounded A'’s and choose <i> so that for any bounded X  only a finite 
number of will be nonzero.

Definition: A perceptron is a device capable of computing all 
predicates which are linear in some given set <i> of partial predi
cates.

That is, we are given a set of (̂ ’s, but can select freely their 
“weights,’’ the a^’s, and also the threshold For reasons that 
will become clear as we proceed, there is little to say about all 
perceptrons in general. But, by imposing certain conditions and 
restrictions we will find much to say about certain particularly 
interesting/aw/7/>.y of perceptrons. Among these families are
1. Diameter-limited perceptrons: for each (p in the set of points 
upon which (p depends is restricted not to exceed a certain fixed 
diameter in the plane.

2. Order-restricted perceptrons: we say that a perceptron has 
order < /7 if no member of <i> depends on more than n points.

3. Gamba perceptrons: each member of ^  may depend on all the 
points but must be a “linear threshold function’’ (that is, each 
member of ^  is itself computed by a perceptron of order 1, as 
defined in 2 above).

4. Random perceptrons: These are the form most extensively 
studied by Rosenblatt’s group: the <̂’s are random Boolean func
tions. That is to say, they are order-restricted and <i> is generated 
by a stochastic process according to an assigned distribution func
tion.

5. Bounded perceptrons: <i> contains an infinite number of v?’s, 
but all the lie in a finite set of numbers.

ijTo give a preview of the kind of results we will obtain, we present 
here a simple example of a theorem about diameter-restricted per
ceptrons.

Theorem 0.8: No diameter-limited perceptron can determine 
whether or not all the parts of any geometric figure are connected 
to one another! That is, no such perceptron computes ĉoNSECTtD-
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The proof requires us to consider just four figures

0̂0 0̂1 X|o X||

and a diameter-limited perceptron \p whose support sets have 
diameters like those indicated by the circles below:

It is understood that the diameter in question is given at the start, 
and we then choose the Xijs to be several diameters in length. 
Suppose that such a perceptron could distinguish disconnected 
figures (like A'oo and A"n) from connected figures (like X and 
A'oi), according to whether or not

2 V? >

that is, according to whether or not 

y~! ^  a^ip(X) + ^  a„<p(A') -  9
group I group 2 group 3

> 0

where we have grouped the v?’s according to whether their support 
sets lie near the left, right, or neither end of the figures. Then for 
Xoo the total sum must be negative. In changing Xoo to Xxo only 
2 group I is affected, and its value must increase enough to make the
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total sum become positive. If we were instead to change A"oo to 
A'oi then 2group2 would have to increase. But if we were to change 
A'oo to Xu, both 2group I and 2)group 2 will have to increase by these 
same amounts since (locally!) the same changes are seen by the 
group I and group 2 predicates, while 2group 3 is unchanged in 
every case. Hence, net change in the Xqo X u case must be even 
more positive, so that if the perceptron is to make the correct 
decision for Xqo, Xqi, and Xio, it is forced to accept Xu as con
nected, and this is an error! So no such perceptron can exist.
Readers already familiar with perceptrons will note that this proof— 
which shows that diameter-limited perceptrons cannot recognize con
nectedness— is concerned neither with “ learning” nor with probability 
theory (or even with the geometry of hyperplanes in n-dimensional hyper
space). It is entirely a matter of relating the geometry of the patterns to 
the algebra of weighted predicates. Readers concerned with physiology 
will note that—insofar as the presently identified functions of receptor 
cells are all diameter-limited—this suggests that an animal will require 
more than neurosynaptic “summation” effects to make these cells com
pute connectedness. Indeed, only the most advanced animals can appre
hend this complicated visual concept. In Chapter 5 this theorem is 
shown to extend also to order-limited perceptrons.

0.9 Seductive Aspects of Perceptrons
The purest vision of the perceptron as a pattern-recognizing 
device is the following:
The machine is built with a fixed set o f computing elements for the partial 
functions if, usually obtained by a random process. To make it recognize 
a particular pattern (set of input figures) one merely has to set the co
efficients to suitable values. Thus “programming” takes on a pleasingly 
homogeneous form. Moreover since “programs” are representable as 
points (« 1, « 2» • • •» ci„) in an Ai-dimensional space, they inherit a metric 
which makes it easy to imagine a kind of automatic programming which 
people have been tempted to call learning: by attaching feedback devices 
to the parameter controls they propose to “program” the machine by 
providing it with a sequence of input patterns and an “error signal” 
which will cause the coefficients to change in the right direction when 
the machine makes an inappropriate decision. The perceptron convergence 
theorems (sQt Chapter 11) define conditions under which this procedure 
is guaranteed to find, eventually, a correct set o f values.

0.9.1 Homogeneous Programming and Learning
To separate reality from wishful thinking, we begin by making a 
number of observations. Let be the set of partial predicates of 
a perceptron and L(4>) the set of all predicates linear in 4>. Thus
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L(4>) is the repertoire of the perceptron—the set of predicates it 
can compute when its coefficients and threshold 0 range over 
all possible values. Of course L (^)  could in principle be the set of 
all predicates but this is impossible in practice, since 4> would 
have to be astronomically large. So any physically real perceptron 
has a limited repertoire. The ease and uniformity of programming 
have been bought at a cost! We contend that the traditional investi
gations of perceptrons did not realistically measure this cost. In 
particular they neglect the following crucial points:

1. The idea of thinking of classes of geometrical objects (or pro
grams that define or recognize them) as classes of /i-dimensional 
vectors (of|, . . .  , a„) loses the geometric individuality of the 
patterns and leads only to a theory that can do little more than 
count the number of predicates in L(^)\ This kind of imagery has 
become traditional among those who think about pattern recogni
tion along lines suggested by classical statistical theories. As a 
result not many people seem to have observed or suspected that 
there might be particular meaningful and intuitively simple predi
cates that belong to no practically realizable set L(^). We will 
extend our analysis of ^ connected to show how deep this problem 
can be. At the same time we will show that certain predicates 
which might intuitively seem to be difficult for these devices can, 
in fact, be recognized by low-order perceptrons: ^ convex already 
illustrates this possibility.

2. Little attention has been paid to the size, or more precisely, 
the information content, of the parameters «i, . . . ,  a„. We will 
give examples (which we believe are typical rather than excep
tional) where the ratio of the largest to the smallest of the co
efficients is meaninglessly big. Under such conditions it is of no 
(practical) avail that a predicate be in L(^). In some cases the 
information capacity needed to store «i, . . .  , a« is even greater 
than that needed to store the whole class of figures defined by the 
pattern!

3. Closely related to the previous point is the problem of time o f 
convergence in a “ learning” process. Practical perceptrons are es
sentially finite-state devices (as shown in Chapter 11). It is there
fore vacuous to cite a “perceptron convergence theorem” as 
assurance that a learning process will eventually find a correct
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setting of its parameters (if one exists). For it could do so trivially 
by cycling through all its states, that is, by trying all coefficient 
assignments. The significant question is how fast the perceptron 
learns relative to the time taken by a completely random pro
cedure, or a completely exhaustive procedure. It will be seen that 
there are situations of some geometric interest for which the con
vergence time can be shown to increase even faster than ex
ponentially with the size of the set /?.
Perceptron theorists are not alone in neglecting these precautions. 
A perusal of any typical collection of papers on “self-organizing” 
systems will provide a generous sample of discussions of “learn
ing” or “adaptive” machines that lack even the degree of rigor 
and formal definition to be found in the literature on perceptrons. 
The proponents of these schemes seldom provide any analysis of 
the range of behavior which can be learned nor do they show 
much awareness of the price usually paid to make some kinds of 
learning easy: they unwittingly restrict the device’s total range of 
behavior with hidden assumptions about the environment in 
which it is to operate.

These critical remarks must not be read as suggestions that we are 
opposed to making machines that can “learn.” Exactly the con
trary! But we do believe that significant learning at a significant 
rate presupposes some significant prior structure. Simple learning 
schemes based on adjusting coefficients can indeed be practical 
and valuable when the partial functions are reasonably matched 
to the task, as they are in Samuel’s checker player. A perceptron 
whose (̂ ’s are properly designed for a discrimination known to be 
of suitably low order will have a good chance to improve its 
performance adaptively. Our purpose is to explain why there is 
little chance of much good coming from giving a high-order prob
lem to a quasi-universal perceptron whose partial functions have 
not been chosen with any particular task in mind.
It may be argued that people are universal learning machines and so a 
counterexample to this thesis. But our brains are sufficiently structured 
to be programmable in a much more general sense than the perceptron 
and our culture is sufficiently structured to provide, if not actual pro
gram, at least a rather complex set of interactions that govern the course 
of whatever the process of self-programming may be. Moreover, it takes 
time for us to become universal learners: the sequence of transitions 
from infancy to intellectual maturity seems rather a confirmation of the
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thesis that the rate of acquisition of new cognitive structure (that is, 
learning) is a sensitive function of the level of existing cognitive structure.
0.9.2 Parallel Computation
The perceptron was conceived as a parallel-operation device in 
the physical sense that the partial predicates are computed simul
taneously. (From a formal point of view the important aspect is 
that they are computed independently of one another.) The price 
paid for this is that all the (pi must be computed, although only 
a minute fraction of them may in fact be relevant to any partic
ular final decision. The total amount of computation may become 
vastly greater than that which would have to be carried out in a 
well planned sequential process (using the same <̂’s) whose 
decisions about what next to compute are conditional on the out
come of earlier computation. Thus the choice between parallel 
and serial methods in any particular situation must be based on 
balancing the increased value of reducing the (total elapsed) time 
against the cost of the additional computation involved.

Even low-order predicates may require large amounts of wasteful com
putation of information which would be irrelevant to a serial process. 
This cost may sometimes remain within physically realizable bounds, 
especially if a large tolerance (or “blur”) is acceptable. High-order 
predicates usually create a completely different situation. An instructive 
example is provided by ĈONNECTED- As shown in Chapter 5, any per
ceptron for this predicate on a 100 x 100 toroidal retina needs partial 
functions that each look at many hundreds of points! In this case the 
concept of “local” function is almost irrelevant: the partial functions are 
themselves global. Moreover, the fantastic number of possible partial 
functions with such large supports sheds gloom on any hope that a 
modestly sized, randomly generated set of them would be sufficiently 
dense to span the appropriate space of functions. To make this point 
sharper we shall show that for certain predicates and classes of partial 
functions, the number of partial functions that have to be used (to say 
nothing of the size of their coefficients) would exceed physically realiz
able limits.
The conclusion to be drawn is that the appraisal of any particular 
scheme of parallel computation cannot be undertaken rationally 
without tools to determine the extent to which the problems to be 
solved can be analyzed into local and global components. The 
lack of a general theory of what is global and what is local is no 
excuse for avoiding the problem in particular cases. This study 
will show that it is not impossibly difficult to develop such a 
theory for a limited but important class of problems.
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0.9.3 The Use of Simple Analogue Devices
Part of the attraction of the perceptron lies in the possibility of 
using very simple physical devices—“analogue computers”—to 
evaluate the linear threshold functions. It is perhaps generally 
appreciated that the utility of this scheme is limited by the sparse
ness of linear threshold functions in the set of all logical functions. 
However, almost no attention has been paid to the possibility that 
the set of linear functions which are practically realizable may 
be rarer still. To illustrate this problem we shall compute (in 
Chapter 10) the range and sizes of the coefficients in the linear 
representations of certain predicates. It will be seen that certain 
ratios can increase faster than exponentially with the number of 
distinguishable points in R. It follows that for “big” input sets— 
say, /?’s with more than 2 0  points—no simple analogue storage 
device can be made with enough information capacity to store the 
whole range of coefficients!
To avoid misunderstanding perhaps we should repeat the quali
fications we made in connection with our critique of the percep
tron as a model for “learning devices.” We have no doubt that 
analogue devices of this sort have a role to play in pattern 
recognition. But we do not see that any good can come o f experi
ments which pay no attention to limiting factors that will assert 
themselves as soon as the small model is scaled up to a usable size,
0.9.4 Models for Brain Function and Gestalt Psychology
The popularity of the perceptron as a model for an intelligent, 
general-purpose learning machine has* roots, we think, in an 
image of the brain itself as a rather loosely organized, randomly 
interconnected network of relatively simple devices. This impres
sion in turn derives in part from our first impressions of the be
wildering structures seen in the microscopic anatomy of the brain 
(and probably also derives from our still-chaotic ideas about 
psychological mechanisms).

In any case the image is that of a network of relatively simple 
elements, randomly connected to one another, with provision for 
making adjustments of the ease with which signals can go across 
the connections. When the machine does something bad, we will 
“teach” it not to do it again by weakening the connections that 
were involved; perhaps we will do the opposite to reward it when 
it does something we like.
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The “perceptron” type of machine is one particularly simple 
version of this broader concept; several others have also been 
studied in experiments.

The mystique surrounding such machines is based in part on the 
idea that when such a machine learns the information stored is 
not localized in any particular spot but is, instead, “distributed 
throughout” the structure of the machine’s network. It was a great 
disappointment, in the first half of the twentieth century, that 
experiments did not support nineteenth century concepts of the 
localization of memories (or most other “faculties”) in highly 
local brain areas. Whatever the precise interpretation of those not 
particularly conclusive experiments should be, there is no ques
tion but that they did lead to a search for nonlocal machine- 
function concepts. This search was not notably successful. Several 
schemes were proposed, based upon large-scale fields, or upon 
“ interference patterns” in global oscillatory waves, but these 
never led to plausible theories. (Toward the end of that era a more 
intricate and substantially less global concept of “cell-assembly” 
—proposed by D. O. Hebb [1949]—lent itself to more productive 
theorizing; though it has not yet led to any conclusive model, its 
popularity is today very much on the increase.) However, it is not 
our goal here to evaluate these theories, but only to sketch a 
picture of the intellectual stage that was set for the perceptron 
concept. In this setting, Rosenblatt’s [1958] schemes quickly took 
root, and soon there were perhaps as many as a hundred groups, 
large and small, experimenting with the model either as a “ learn
ing machine” or in the guise of “adaptive” or “self-organizing” 
networks or “automatic control” systems.

The results of these hundreds of projects and experiments were 
generally disappointing, and the explanations inconclusive. The 
machines usually work quite well on very simple problems but 
deteriorate very rapidly as the tasks assigned to them get harder. 
The situation isn’t usually improved much by increasing the size 
and running time of the system. It was our suspicion that even in 
those instances where some success was apparent, it was usually 
due more to some relatively small part of the network, and not 
really to a global, distributed activity. Both of the present authors 
(first independently and later together) became involved with a 
somewhat therapeutic compulsion: to dispel what we feared to be
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the first shadows of a “holistic” or “Gestalt” misconception that 
would threaten to haunt the fields of engineering and artificial 
intelligence as it had earlier haunted biology and psychology. 
For this, and for a variety of more practical and theoretical goals, 
we set out to find something about the range and limitations of 
perceptrons.
It was only later, as the theory developed, that we realized that 
understanding this kind of machine was important whether or not 
the system has practical applications in particular situations! For 
the same kinds of problems were becoming serious obstacles to 
the progress of computer science itself. As we have already re
marked, we do not know enough about what makes some algo
rithmic procedures “essentially” serial, and to what extent—or 
rather, at what cost—can computations be speeded up by using 
multiple, overlapping computations on larger more active 
memories.

0.10 General Plan of the Book
The theory divides naturally into three parts. In Part I we explore 
some very general properties of linear predicate families. The 
theorems in Part I apply usually to all perceptrons, independently 
of the kinds of patterns considered; therefore the theory has the 
quality of algebra rather than geometry. In Part II we look more 
narrowly at interesting geometric patterns, and get sharper but, of 
course, less general, theorems about the geometric abilities of our 
machines. In Part III we examine a variety of questions centered 
around the potentialities of perceptrons as practical devices for 
pattern recognition and learning. The final chapter traces some of 
the history of these ideas and proposes some plausible directions 
for further exploration.

\o recul +llis loook ôv)e ¿oes ruA' ^  '‘h<noco cill

"kau^dev" Vviq'Hie lAid-f/cq (. seAfoiAs ave “ —
loe tv/'f’kciut’ losi'mcj tke

Iq.'feir slv'(p
. § 5  , § 7 .  5 10.


