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Abst ract . Learning in layered neu ral networks is posed as the mini­
mizat ion of an error function defined over the training set. A proba­
bilist ic interpretation of the target act ivities suggests the use of rela­
t ive ent ropy as an error measure. We investigate t he merits of using
this error function over t he traditional quad ratic function for gradient
descent learni ng. Comparative numerical sim ulations for the conrf­
guity problem show marked redu ct ions in learn ing t imes. This im ­
provement is explained in terms of the characteristic steepness of the
landscape defined by the error function in configuration space.

1. Introduction

Categorization tasks for which layered neural networks can be trained from
examples include the case of probabilisti c categori zatio n. Such implemen­
tation exploits the ana log character of the activity of th e outpu t un its: the
activity OJ of the output ne uron j under present atio n of input pattern 0:

is propor tional to the probability that input pa ttern 0:' possesses at t ribute
i . The interpre tat ion of target activities as probability distr ibutions leads to
measuring network performance in processing inpu t 0:' by the relative entropy
of the target to the out put probability distr ibutions [1-3].

T here is no a priori way of deciding whether such a logarithmic error
funct ion can improve t he performance of a grad ient descent learni ng algo­
rithm, as compared to the standa rd quadratic error funct ion. To investigate
th is question we performed a comparat ive numerical study on the contiguity
problem, a class ification task used here as a test case for the efficiency of
learn ing algorithms .

We find that measur ing error by the relati ve entropy leads to notable
red uct ions in the ti me needed to find good solutions to the learning problem .
This improvement is explain ed in terms of the characterist ic steepness of the
surface defined by the error funct ion in configuration space.
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The pap er is organi zed as follows: The learning problem is discussed
in section 2. Comparative numerical resu lts for the contiguity problem are
presented in section 3, and sect ion 4 contains a summary and discussion of
our results.

2. The Learning Problem

Consider a layered feed-forward neural network with determinist ic parallel
dynamics, as shown in figure 1.

The network consists of L + 1 layers providing L levels of processing. The
first layer with e= 0 is the input field and contains No units. Subsequent
layers are labeled 1 :s e:s L; the i t h layer contains n, units. The (e + 1)th

level of processing corresponds to th e state of the units in laye r edetermining
that of the unit s in layer (£+1) according to the following deterministic and
parallel dynamical rule:

N,
"Wlt+1) ViI) +W (t+l)
L....J IJ J I '
j = 1

g(U/'+1)) . (2.1)

The input ul l
+1 ) to un it Z III layer (f + 1) is a linear combination of

the states of the units in the preceding layer. This input determ ines the
state \Ii(l+1) via a nonli near, monotonically increasi ng, and bounded t ransfer
funct ion V = g(U).

The first layer rece ives input from the external world: a pa t tern is pre­
sented to the network by fixing the values of the var iables \Ii(O) , 1 .S i :s No.
Subsequent layer states are determ ined consecutively according to equation
(1) . The state of the last layer e = L is interp reted as the output of the
network . The network thus provides a mapping from input space y(O) into
ou tput space V(L).

The network architecture is specified by the number {Ne},1 :S. e :s L

of units per layer, and its config urat ion by the couplings {WH)} and biases

{W/')} for 1 <:: £ <:: L. Every point {IV} in configurat ion space represents
a specific network design which resu lts in a seecific input-output mapp ing .
The design problem is that of finding points {W} corresponding to a specific
mapping 1I(L) = 1(11(0») .

Consider a labeling of the input vectors by an index 0:. The input vectors
fo: = V(O) are usually binary and 1 < 0: < 2No. The output vector 00: = V(L)... ' - -... ...
corr esponding to input 1" is determined by oa = f(Ia) for all 0: .

The network can be used for classification, categorization, or diagnosis
by interp reting the activity OJ of the ph output un it under presen tat ion of
the o:th input pattern as the probability that the input be longs to category
j or possesses the ph attribute. This interp retation requires act ivi ty values
OJ restricted to the [0,1] interval. If the range [a.b] of the transfer function
V = g(U) is different from [0,1], the outputs are linearly rescaled to the
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Figure 1: A layered feed-forward network with L levels of processing.
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desired interval. Note that the class of Boolean m appings corr esponds to
out put units restricted to binary values OJ = 0,1 , and is a subclass of th e
general class of mappings that can be im plemented by such networks.

A quanti tative formulation of the desig n problem of finding an appropri­
ate net work configurat ion {\tV} to implement a desired mapping requires a
measure of quality: to which extent does the mapping realized by the ne t­
work coincide with th e desired mapping? The dissimilarity between these
two mappings can be measured as follows. Given a sub set of input patterns
T«, 1 :::; a :::; m for which the desired outputs j o: ,1 ::; Q ::; m are known, and
given the outputs 60: = J(P) produced by the network, the dist ance

(2.2)

between th e target icY and the output o er measures the error made by th e
network when processing input fer . Then the error funct ion

m m

E '" 2:: d" = 2:: d(0", f " )
er=l 0'=1

(2.3)

meas ures the dis similarity be tween the mappings on the restricted dom ain of
inp ut patterns {fer}, 1 .s a: :s m. For a fixed set of pa irs {fx , f er}, 1 :s Q' :s rn,
the function E is an implicit function of the couplings {W} through th e
output s {O "}.

There are many possible choices for d(oer, 7 0' ) . Th e only required prop­
erty is!

and

which guarantees

E~ a
and

iff

(2.4)

(2.5)

(2.6)

E = O iff [or all o , l :S;" :S;m. (2.7)

The design problem thus beco mes that of finding global m inima of E (lT' ):
the configuration space {W} has to be searched for point s that sat isfy

E(W) = O. (2.8)

T his design method of training by example.....extracts informatio n about the
des ired mapp ing from the training set {ler, T O'}, 1 .s Q' :s ffi.

A standard metho d to solve the minimization problem of equat ion (2.8)
is gradient descent . Configuration space fvV} is searched by itera ting

lThe ter m 'distance' is not used here in its rigorous mathematical sense, in that sym­
metry and triangular inequality are not required .
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(2.9)

from an arbitrary starting point WooT his algor ithm requires differentiabili ty
of the transfer function 11 =g(U ), and of the distance d(O", f1 with respect
to the output variabl es (5er .

Many choices of d(6a
, f a) sat isfy the listed requ irements . The sum of

squared errors

d(O, f) = ~ 110 - f II'

leads to a quadrat ic error function

1 m N L

EQ = - I: DOj _ 1jO)' ,
2 a=1 j = l

(2.10)

(2.11)

and to the generalized a-r ule [4] when used for gradient descent. Alt hough in
most existing applicat ions of th e 6-ru le [4,5] th e target activities of th e output
units are binary, 7ja = 0, 1, the algorithm can also be used for probabilistic
targets 0 ::; 7ja::; 1. But given a probabilist ic int erpretation of both ou tputs

(5er and targets f er, it is nat ural to choose for d((5er, fer) one of the st andar d
measures of distance between probability distributions . Here we invest iga te
the properties of a logari thmic meas ure , the entropy of f with res pect to 6
[6J-'

A binary random variable X j associated with the ph output un it describes
the presence (x j=True) or absence (xj=False) of the ph attribute. For a given
inpu t pat tern Ie. , the act ivity 6a reflects the condi tional probabilities

and

P {Xj = TI"j = OJ (2.12)

(2.13)

(2.14)

7ja and 7ja=l-1't are the target values for these conditional probabilities.
The relati ve entropy of target with respect to output [6] is give n by

T " (1 - T")
d" = T" In - '- + (1 - T ") In '

J J OJ J (1 - OJ)

for each outpu t unit, 1 ::; j S NL . As a funct ion of th e output variable OJ
, t he funct ion dj is differentiable, convex , and positive. It reaches it s global
m inimum of dj = 0 at OJ =1'/ . Then

N,

d" = d(O°, f a) = I:dj
j= l

(2.15)

20ther choices for meas uring d ist an ces between probability distributions are available,
such as the llhattacharyya distance [7].
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leads to a logari thmic error function

(2.16)

A simila.r function has been proposed by Baum and Wilczek [1] and Hin­
ton [3] as a tool for maximizing the likelihood of generating the target con­
dit ional prob abilities. Their learning method requires maximizing a funct ion
E given by

(2.17)

where EL( W ) is the error function defined by equation (2.16), and the con­
stant

m N
L{II}

Eo = I: I: T;" In T " + (1 - T;") In (1 _ T ")
0=13=1 J 3

(2.18)

is the ent ropy of the target probability distribution for the full tr aining set .
Extrema of the function E(vV) do not correspond to E(W) = 0, but to
E(vV) = - Eo, a qu ant ity that dep ends on the targets in the t ra ining set .
It is preferabl e to use th e normalization of EL(ltV) in equation (2.16), to
eliminate this dependence on the target values.

The err or functi on EL(\·\i ) of equat ion (2.16) has been used by Hopfield
[2] to compare layered network learning wit h Boltzmann machine learning.

There is no a priori way of selecting between the quadratic error function
EQ an d logari thmic me asures of dis tance such as the relat ive entropy EL . The

efficiency of gradient descent to solve the opti mization problem E(W) = 0 is
con t rolled by the propert ies of the error surface E(W), and depends on the
choice of dist ance measur e and nonlinear transfer function.

T he gene ralized a-rule of R umelhart et al. [4] results from applying gra­
die nt descent (equat ion (2.9)) to the quadratic error function EoP'V). Wh en
applied to the relative entropy Ed l.-if ), gradient descent lead s to a similar
algor ithm, sum mar ized as follows:

(2.19)

and

where the erro r all) is de fined as

81') = _ aE = _ '(U(')) aE, - au(') g , avlt ) ·. ,

(2.20)

(2.21)
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(2.22)

T hese equations are identical to those in reference [4], an d are valid for any
different iable er ror funct ion. Following reference [4), the weights are updated
accordi ng to equat ions (2.19) and (2.20) after presentation of each training
pattern P.

The calculation of 6~L) for un its in the top level depends expl icitly on the
- 10 -form of E( W), since It, = 0 ;. For EL(W),

81L) = ' (U( L)) 70" - O~
, g , O~(I - O~)

For hidden units in levels 1 ::; e::; L - 1,

(2.23)

the standard rule for er ror back-propagation (4). A simp lificat ion results from
choosing t he logistic transfer funct ion,

v = g(U) = ~(I + tanh ~U) = (I +e-Utl, (2.24)

for which there is a cance llat ion between the derivat ive g'(U) and the de­
nom inator of equation (2.22), lead ing to

8!L) = T " - O~, . , (2.25)

for the error at the output level.
T his algori thm is qu ite similar to th e generalized 8-rule, and there is no a

priori way of evalua t ing th eir relat ive efficiency for learn ing. We invest igate
t bis question by applying them both to the cont iguity prob lem [8,91 . T his
classifica tion tas k has been used as a tes t problem to investigat e learn ing
abilit ies of layered neural networks [8- 11].

3. A test case

The contiguity problem is a class ification of binary input patterns I =
(11, .. . , I N), I i = 0, 1 for ali I::; i ::; N, into classes accord ing to the num­
ber k of blocks of +1'5 in the pattern [8,91. For example, for N = 10,
r= (0110011100) corresponds to k = 2, while r= (0101101111) corresponds
to k = 3. T his classification lead s to (1 + A:max ) categories corres pondi ng to
o::; k ::; km ax , with A:m ax =1!f I, where I x I refers to the upp er integer part
3 of x . T here are

(3.1)

3For any real numb er .:r: in the interval (n - 1) < x S n, 1x 1= n is the upper integer
part of x .



632 Sara Solla, Esther Levin, and Michael Fleischer

1 2 3 N

Figure 2: A solut ion to the contiguity prob lem wit h L = 2. All
couplings {Wi j } ha ve a bsolu te value of unit y. Excitatory (Wi j =
+ 1) and inhibitory (Wij = - 1) couplings are indicated by _ and

_, resp ecti vely. Interme diate uni ts are biased by WP) = - O.5j the

output uni t is biased by WP ) = -(ko + 0.5).

input pat terns in the p h category. A simpler classificat ion t ask invest igated
here is the dichotomy into two classes corres pond ing to k ::; ko and k > ko.
This problem can be solved [8,9] by an L = 2 layered networ k with No = N 1

N1 = N, and N2 = 1. The architect ure is shown in figure 2. The firs t level
of process ing detects subsequent 01 pai rs corresponding to the left edge of a
block, and the second leve l of processing counts the number of such edges.

Kn owing that such solut ion ex ists, we choose for our learning exp eriment s
the network architecture shown in figure 3, with No = Nv = Nand N2 = l.
The network is not fully connected : each unit in the i = 1 layer receives
input from only th e p subseq uen t units just below it in th e i = 0 layer. T he
parameter p can be interpret ed as the widt h of a receptive field.

T he results reported here are for N = 10, ko = 2, and 2 :s: p :::; 6. Th e
total domain of 2N = 1024 inpu t pat terns was rest ricted to the union of
N(2) = 330 an d N(3) = 462 corresponding to k = 2 and k = 3 respec t ively.
Out of these N(2) +N(3) = 792 input patterns, a training set of m = 100
patterns was randomly selected, with m(2) = m(3) = 50 examples of each
category.

The starting point Wo for the gradient descent algorithm was chosen at
random from a normal distribution . The step size 1] for the downhill search
was kept constant during each run .
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Figure 3: Network architect ure for learning contiguity, with L = 2,
No = Nt = N , N2 =1, and a receptive field of width p.

Numerical simulations were performed in each case from th e same st art­
ing point Wo for both EQ(W ) and Ed W ). After each learning iterat ion
consisting of a. full presentat ion of t he t ra.ining set (~t = l ), the network was
checked for learning and generalization abilit ies by separately counting t he
fraction of correct classifications for patterns within (%L) and not included
(%G) in the t raining set , respectively. The classification of the a tn input
pattern is considered correct if l0 et - yet ) :S ~, with 6. = O.l.

Both th e learning %L and generalizat ion %0 abilities of the network are
monitored as a function of time t, Th e learning pro cess is termi na ted aft er T

presentat ions of the training set, either because %G = 100 has been achiev ed,
or because th e network performance on t he trainin g set , as measured by

m

,,= L(O" - T ")',
0'= 1

(3 2)

satisfies the stopping cri terion t; .:s O.O l.
Comparative results between the two error fun ctions are illus trated for

p = 2 in figure 4. In both cases the networks produced by learning all
patterns in the t raining set (%L = 100) exhibi ted perfect gen eralization
ability (%0 = 100). Note t he significant reduct ion in learning t ime for the
relat ive entropy with respect to th e t raditiona l quadra tic error function. This
accelerated learning was found in all cases.

Results sum marized in table 1 correspond to several simula t ions for each
error function, all of them successful in learning (%L = 100) . Resul ts for
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Figure 4: Learn ing and generalization ability as a funct ion of t ime t

for p = 2. Comparat ive resu lts are shown for EL( l¥) an d EQ(W) .
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p EQ EL
%G T %G T

2 100 339 100 84
3 95 1995 91 593
4 90 2077 81 269
5 73 2161 74 225
6 68 2147 68 189

Table 1: Compa ra tive result s for learn ing contiguity with E L and
EQ, average d over successful run s (%L = 100). Learnin g time T

is measur ed by th e number of presentat ions of t he full training set
needed to achieve e :::; 0.01 or %G = 100.

EQ EL
%G I % LI T %G I%L I T

83 I 95 I 1447 91 I 100 I 1445

Table 2: Compar ative results for learning cont iguity with EL and EQ,

averaged over all run s for p = 2.
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each value of p are aver ages over 10 runs with different starting po ints l,vo.
The monotonic decrease in gene ralization abi lity wit h increasing p previously
observed for th e quadratic error function [9] is also foun d here for t he relative
ent ropy. Using this logari tlunic error funct ion for learning does not im prove
the gene ra lizat ion ability of the resulting network. It s advantage resides in
sys temat ic reductions in learning time T, as large as an order of magni tude
for large p.

Learning contigui ty with th e ne twork archi tecture of figure 3 is always
successful for p 2: 3: for both EL and EQ t he learn ing pro cess leads to
configurations that sat isfy E(W ) = 0 for all tried starting points. For p =
2, the gradient descent algor it hm often gets trapped in local m inima with
E( IV) > 0, and %L = 100 cannot be achieved. As shown by the results in
table 2, the gradie nt descent algorithm is less likely to get trapped in local
minima when applied to EdW).

Vve conject ure th at a lar ger density of local m inima that are not global
m inima in EQ(W) is resp onsibl e for the more frequent failure in learning for
p = 2. This conj ecture is sup ported by t he fact that learning contiguity with
EL required a smaller step size." than for EQ. A value of ." = 0.25 used

for all runs corre spondin g to EQ(W) led to oscilla t ions for EdIV) . Th at it

sm aller valu e of ." = 0.125 was req uired in this case indi cates a smoot her
err or funct ion, with less shallow local min im a and narrowe r global m inim a,
as schemat ically illustrated in figure 5.

A decrease in the densi ty of local minim a for the logarit hmic error func­
tion EL(W) is due in part to the cancellation between g'(UILI) and 0(1 - 0 )
in equation (2.22) for h(L). Such cancellation requi res the use of the logistic
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Fig ure 5: Schematic rep resentation of the landscape defined by the
err or funct ions EL and EQ in configuration space {W } .

t ransfer function of equat ion (2.24), and eliminates the spurious minima that
otherwise arise for 0 = 1 when T = 0, and for 0 = 0 when T = 1.

4. Su m m ary and discussion

Our numerica l resul t s indicate that the choice of the logarith mic error func­
tion EdH') over the quad rat ic er ror function EQ (l¥ ) results in an improved
learning algorithm for layered neura l net works. Such im provement can be
exp la ined in terms of the characterist ic st eepness of the landscape defined by
each error func t ion in configuration space {W }. A quantitative measure of
the average steepness of the E(W) surface is given by S =< IVE(W) I >. Re­
liable est imates of S from random sam pling in {W} space yield SL/SQ '" 3/2.
The inc reased steepness of EL(lV ) over EQ(W) is in agreement with the
schematic landscape shown in figu re 5, and ex plains the reduction in lear n­
ing t ime found in our numerical simula tions .

A steeper error funct ion EdW) has been shown to lead to an improved
learni ng algor ith m when gradient descent is used to solve the E(W) = 0
minimization problem. T hat the network design resul ti ng from successful
learning does not ex hibit im prove d generalizat ion ab ilit ies can be understood
as follows. Consider the total error funct ion

E= 2:: dO = 2:: dO + 2:: dO .
all Q c E T 0' ~ T

(4 .1)

The first term includes all patterns in the tr aining set T , and is the er ror
function E which is mini mized by the learn ing algor ith m. The second term
is the error made by the network on all pat te rns not in the training set, and
measures generalization ability. As shown in figure 6, equally valid solutions
to the learn ing p roblem E( ltliO ) = 0 vary wide ly in the ir generalization abi l­
ity as measured by E(W) . We arg ue that the app lication of inc reasingly
sophist icated techniques to the learning pro blem posed as an unconst rained
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Figure 6: Valid solut ions to the E( l¥) = 0 learn ing problem, indicated
by _, exhibit varying degrees of generalization ability as measured by
E(W).
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opti mizat ion problem does not lead to marked im provement in the general­
ization abi lity of the resulting network.

It is nevertheless desira ble to use computat ionally efficient lea rning al­
gor ithms. For gradient descent learni ng, such efficiency is controlled by the
steepness and dens ity of local m inima of the surface defined by E( l¥) in con­
figuration space. Our work shows that notabl e red ucti ons in learning time
call result from an app ropr iate cho ice of error funct ion.

The quest ion that rem ains open is whet her th e logarithmic error function
is generally to be preferred over the quadrat ic error function . The accelerated
learning found for the contiguity pro blem, and other test problems for wh ich
we have performed comparative simulations, has been explained here as a
consequence of the smoot hness and steepness of the surface E(W) . We know
of no argument in support of EdvV) bei ng always smoother than Ed1.V);
the smoothness of the E( v;i) surface depends subtly on the problem, it s
representation, and the choice of training set T . As for the steepness, the
argument presented in the Append ix proves that Edl.v) is indeed steeper
than EQ( vV) in the vic inity of local min ima, in support of t he ubiquitous
reduct ion in learning time.



638 Sara So11a, Esther Levin, and Michael Fleischer

Acknowle dg m e nts

We have enjoyed conve rsations on this subject with John Hopfield. We thank
him for sharing his insight , and for making a copy of his paper available to
us before publication.

Append ix

Consider the error function
m NL

E= LLdj ,
0=1 ;=1

with

d" = ~ (0" - T ")') 2 J )

for EO , and

T·
dj = 7;" In 0" + (1 - 7;.)

J

In (1 - 7;. )
(1 - OJ)

(A.l)

(A.2)

(A.3)

for EL -

Th e effect of a discrepancy !:i.e; = OJ- Tt between target and output on
dj is eas ily calcu lated , and can be written as

~ = ~ (L'!..)'
J 2 J

for EO, and

dj = ~ AL (L'!.j)' +0 ((L'!. j)3)

(AA)

(A.5)

for E LI 0 < 7jCt < 1. Bo th error funct ions are quadrati c to lowest order in
!:i.j . B ut the parabolic trough that confines OJto the vicinity of T;Ct is much
steeper for EL than for EQ , since the funct ion AL = 1/(7;"(1 - 7;")) sa t isfies
AL 2:: 4 in the interval 0 < 7jo < 1. This function reaches its minimum value
AL = 4 at Tjo = 1/ 2, and diverges as 7jo approaches 0, l.

The quadrat ic expansion of equation (A.5) for EL is not valid at 7jo = 0, 1.
At the ends of the interval the correct expans ion is

dj = ±L'!.j + ~ (L'!.j)' + 0 ((L'!.j)3), (A.6)

with the plus sign valid for 7jo = 0, OJ = ~j , and the minus sign val id for
T/~ = 1, OJ = 1 + ~j. For 7j0 = 0,1 the confining effect of EL is again
stronger than that of EQ , due to the leading linear term .

Th e preced ing analysis demonstrates that Ec(O") is steepe r than EQ(O")
in the vic inity of the minima at 6 0 = TO. Since both functi ons depend
implicil.ly on the coup lings {W} t hrough the out puts {O· }, it follows t hat
Ec(W) is steeper t han Eq(W) . Note that th e com ponents of the gradient
\7E( vV) are given by
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aE
aw;~)

ad'f ao'f
ao" awl') ·

J ik

(A.?)

The facto rs {)OjI8H/i~) depend only on the processing of information along
the network} from layer f. to the t<p I~er at l = L, and are independent
of the choice of distance flO = d(oa, TO). An increase in the magnitude
of 8dj180j in th e vicinity of OJ = 7ja thus results in an increase in the

m agn itude of the gradien t of E(W ).
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