Complex Systems 2 (1988) 625-640

Accelerated Learning in Layered Neural Networks

Sara A. Solla
AT&T Bell Laboratories, Holmdel, NJ 07733, USA

Esther Levin
Michael Fleisher
Technion Israel Institute of Technology, Haifa 32000, Israel

Abstract. Learning in layered neural networks is posed as the mini-
mization of an error function defined over the training set. A proba-
bilistic interpretation of the target activities suggests the use of rela-
tive entropy as an error measure. We investigate the merits of using
this error function over the traditional quadratic function for gradient
descent learning. Comparative numerical simulations for the conti-
guity problem show marked reductions in learning times. This im-
provement is explained in terms of the characteristic steepness of the
landscape defined by the error function in configuration space.

1. Introduction

Categorization tasks for which layered neural networks can be trained from
examples include the case of probabilistic categorization. Such implemen-
tation exploits the analog character of the activity of the output units: the
activity OfF of the output neuron j under presentation of input pattern «
is proportional to the probability that input pattern o possesses attribute
j. The interpretation of target activities as probability distributions leads to
measuring network performance in processing input a by the relative entropy
" of the target to the output probability distributions [1-3].

There is no a priori way of deciding whether such a logarithmic error
function can improve the performance of a gradient descent learning algo-
rithm, as compared to the standard quadratic error function. To investigate
this question we performed a comparative numerical study on the contiguity
problem, a classification task used here as a test case for the efficiency of
learning algorithms.

We find that measuring error by the relative entropy leads to notable
reductions in the time needed to find good solutions to the learning problem.
This improvement is explained in terms of the characteristic steepness of the
surface defined by the error function in configuration space.
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The paper is organized as follows: The learning problem is discussed
in section 2. Comparative numerical results for the contiguity problem are
presented in section 3, and section 4 contains a summary and discussion of
our results.

2. The Learning Problem

Consider a layered feed-forward neural network with deterministic parallel
dynamics, as shown in figure 1.

The network consists of L+ 1 layers providing L levels of processing. The
first layer with £ = 0 is the input field and contains Ny units. Subsequent
layers are labeled 1 < £ < L; the " layer contains N, units. The (£ + 1)
level of processing corresponds to the state of the units in layer ¢ determining
that of the units in layer (£ + 1) according to the following deterministic and
parallel dynamical rule:

N,
pler i WO | pler)
i i 7 1 b

=1

VD = g(U). 1

The input Uf“l) to unit 7 in layer (£ 4 1) is a linear combination of
the states of the units in the preceding layer. This input determines the
state V,-(H'l) via a nonlinear, monotonically increasing, and bounded transfer
function V = g(U).

The first layer receives input from the external world: a pattern is pre-
sented to the network by fixing the values of the variables K{D), 1 <1< N,.
Subsequent layer states are determined consecutively according to equation
(1). The state of the last layer £ = L is interpreted as the output of the
network. The network thus provides a mapping from input space V() into
output space Vi,

The network architecture is specified by the number {N,},1 < £ < L
of units per layer, and its configuration by the couplings {I’V,-(_f)} and biases

{W; f)} for 1 € £ < L. Every point {W} in configuration space represents
a specific network design which results in a specific input-output mapping.
The demgn problem is that of finding points {W} corresponding to a specific
mapping Vi) = f(V(G))

. Consider a labeling of the input vectors by an index a. The input vectors
I* = V(© are usually binary, and 1 < o < ‘ZN“ The output vector O« = V()
corresponding to input 7* is determined by O% = f(I?) for all a.

The network can be used for classification, categorization, or diagnosis
by interpreting the activity OF of the 7" output unit under presentation of
the o' input pattern as the probability that the input belongs to category
j or possesses the j*h attribute. This interpretation requires activity values
O restricted to the [0,1] interval. If the range [a,b] of the transfer function
V' = g(U) is different from [0,1], the outputs are linearly rescaled to the
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Figure 1: A layered feed-forward network with L levels of processing.
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desired interval. Note that the class of Boolean mappings corresponds to
output units restricted to binary values OF = 0,1, and is a subclass of the
general class of mappings that can be implemented by such networks.

A quantitative formulation of the design problem of finding an a.pproprz-
ate network configuration {W} to implement a desired mapping requires a
measure of quality: to which extent does the mapping realized by the net-
work coincide with the desired mapping? The dissimilarity between these
two mappings can be measured as follows. Given a subset of input patterns
%1 <o <mfor which the desired outputs ’T“ 1 < @ < m are known, and
given the outputs O° = f(l"‘) produced by the network the distance

= d(F°, T*) (2.2)

between the target T and the output & measures the error made by the
network when processing input /*. Then the error function

B= f; d* = fj (O, T*) (2.3)

a=1 a=1
measures the dissimilarity between the mappings on the restricted domain of
input patterns {I“} 1 < a < m. For a fixed set of pairs {I“’ ‘T”} 1<a<m,
the function F is an implicit function of the couplings {W} through the
outputs {3},
There are many possible choices for d(@“, ’f“} The only required prop-
erty is'

BT 20 (2.4)
and

d(d% T =0 iff Oo=Te, (2.5)
which guarantees

E>0 (2.6)
and

E=0 iff G2 = T forall @, 1<a<m. (2.7)

The design problem thus becomes that of finding global minima of E(W}
the configuration space {W¥} has to be searched for points that satisfy

E(W) = 0. (2.8)

This design method of training by example extracts information about the
desired mapping from the training set {I%,7°},1 < a < m.

A standard method to solve the minimization problem of equation (2.8)
is gradient descent. Configuration space {f/ff} is searched by iterating

'The term ‘distance’ is not used here in its rigorous mathematical sense, in that sym-
metry and triangular inequality are not required.
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AW = —y V3 E(W) (2.9)

from an arbitrary starting point W,. This algorithm requires differentiability
of the transfer function V = g(U), and of the distance (3, T"j with respect
to the output variables C’)”‘

Many choices of d(O"’ F ) satisfy the listed requirements. The sum of
squared errors

DU R
46,7 =5 6-T| (2.10)
leads to a quadratic error function
m Np
Z Z(@"‘ TC" (2.11)
2 a=1j=1

and to the generalized §-rule [4] when used for gradient descent. Although in
most existing applications of the §-rule [4,5] the target activities of the output
units are binary, 7, = 0,1, the algorithm can also be used for probabilistic
targets 0 < 7, < 1. But given a probabilistic interpretation of both outputs

O and targets 7, it is natural to choose for d(3* T°) one of the standard
measures of cllsta.nce between probability distributions. Here we investigate
the properties of a logarithmic measure, the entropy of T with respect to 0]
[6].2

A binary random variable z; associated with thej output unit describes
the presence (a:j.mTrue) or absence (z;=False) of the j*" attribute. For a given

input pattern I*, the activity O reflects the conditional probabilities
Plz; =Tl|a} =02 (2.12)
and
P{z;=Fla}=0%=1-0% (2.13)

T2 and ’T°‘—1 -T% are the target values for these conditional probabilities.
The relatlve entropy of target with respect to output [6] is given by

(1-79)

=09 (2.14)

o T o
di =T, ln@+(1—’1;)1n

for each output unit, 1 < j < Np. As a function of the output variable O
, the function d¢ is differentiable, convex, and positive. It reaches its global
minimum of d¥ = 0 at OF =T . Then

&~ = d(0°,T°) = Zd"‘ (2.15)

20ther choices for measuring distances between probability distributions are available,
such as the Bhattacharyya distance [7].



630 Sara Solla, Esther Levin, and Michael Fleischer

leads to a logarithmic error function

m Np T T«
Engz{Tmn@ (1=T%) In 8__0%}

a=1 j3=1 J

(2.16)

A similar function has been proposed by Baum and Wilczek [1] and Hin-
ton [3] as a tool for maximizing the likelihood of generating the target con-
ditional probabilities. Their learning method requires maximizing a function
I given by

B(W) = — (B(W) + o) , (2.17)

where EL(W/) is the error function defined by equation (2.16), and the con-
stant

m Np
ZZ{T“ it L =) mﬁ} (2.18)

a=1j=1

is the entropy of the target probability distribution for the full training set.
Extrema of the function E(W’) do not correspond to E(W) = 0, but to

(W) = —E,, a quantity that depends on the targets in the training set.
It is preferable to use the normalization of E',r_,(ﬁf) in equation (2.16), to
eliminate this dependence on the target values.

The error function EL(W) of equation (2.16) has been used by Hopfield
[2] to compare layered network learning with Boltzmann machine learning.

There is no a priori way of selecting between the quadratic error function
Ly and logarithmic measures of distance such as the relative entropy Er,. The
efliciency of gradient descent to solve the optimization problem E(T’f/) =01is
controlled by the properties of the error surface E(W), and depends on the
choice of distance measure and nonlinear transfer function.

The generalized §-rule of Rumelhart et al. [4] results from applying gra-
dient descent (equation (2.9)) to the quadratic error function EQ(W) When

applied to the relative entropy EL(I/T/), gradient descent leads to a similar
algorithm, summarized as follows:

AW = 5 8 (2.19)
and
AW = g gl (2.20)

where the error 5,@ is defined as

5(3) - ok

S Tgu® T (m)

V(‘-’ i
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These equations are identical to those in reference [4], and are valid for any
differentiable error function. Following reference [4], the weights are updated
according to equations (2.19) and (2.20) after presentation of each training
pattern 1=

The calculation of 6,‘“ for units in the top level depends explicitly on the
form of E(W), since V,-(L) = ;. For EL(W),

5 = /(U@ I*-0F 9.99
70 ar—ony s
For hidden units in levels 1 < £ < L — 1,
Nega
80 = g(U) 3 s, (2.23)

k=1

the standard rule for error back-propagation [4]. A simplification results from
choosing the logistic transfer function,

V=gU)= %(1 + tanh éU): {13902, (2.24)

for which there is a cancellation between the derivative ¢'(U/) and the de-
nominator of equation (2.22), leading to

8 = 7= — O (2.25)

for the error at the output level.

This algorithm is quite similar to the generalized é-rule, and there is no a
priori way of evaluating their relative efficiency for learning. We investigate
this question by applying them both to the contiguity problem [8,9]. This
classification task has been used as a test problem to investigate learning
abilities of layered neural networks [8-11].

3. A test case

The contiguity problem is a classification of binary input patterns I=
(I1,...,In), I; = 0,1 for all 1 <z < N, into classes according to the num-
ber k of blocks of +1’s in the pattern [8,9]. For example, for N = 10,

= (0110011100) corresponds to k£ = 2, while I= (0101101111) corresponds
to k = 3. This classification leads to (1 + knax) categories corresponding to
0 €k < kpax, With kpax =| % |, where | @ | refers to the upper integer part
3 of z. There are

Nk = ( Wt ) (3.1)

3For any real number z in the interval (n — 1) < # < n, | z |= n is the upper integer
part of z.
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1 2 N

Figure 2: A solution to the contiguity problem with L = 2. All
couplings {W;;} have absolute value of unity. Excitatory (W;; =
+1) and inhibitory (W;; = —1) couplings are indicated by — and
—e, respectively. Intermediate units are biased by VV,;(I) = —0.5; the
output unit is biased by Wi(;!) = —(ko + 0.5).

input patterns in the k" category. A simpler classification task investigated
here is the dichotomy into two classes corresponding to k < ky and & > k.
This problem can be solved [8,9] by an L = 2 layered network with Ny = N,
N; = N, and N, = 1. The architecture is shown in figure 2. The first level
of processing detects subsequent 01 pairs corresponding to the left edge of a
block, and the second level of processing counts the number of such edges.

Knowing that such solution exists, we choose for our learning experiments
the network architecture shown in figure 3, with Ny = N, = N and N, = 1.
The network is not fully connected: each unit in the £ = 1 layer receives
input from only the p subsequent units just below it in the £ = 0 layer. The
parameter p can be interpreted as the width of a receptive field.

The results reported here are for N = 10, ky = 2, and 2 < p < 6. The
total domain of 2V = 1024 input patterns was restricted to the union of
N (2) = 330 and N (3) = 462 corresponding to k = 2 and k = 3 respectively.
Out of these A(2) + NV (3) = 792 input patterns, a training set of m = 100
patterns was randomly selected, with m(2) = m(3) = 50 examples of each
category.

The starting point W, for the gradient descent algorithm was chosen at
random from a normal distribution. The step size 5 for the downhill search
was kept constant during each run.
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Figure 3: Network architecture for learning contiguity, with L = 2,
No= Ny =N, Ny =1, and a receptive field of width p.

Numerical simulations were performed in each case from the same start-
ing point W, for both Eo(W V) and EL(W) After each learning iteration
consisting of a full presentation of the training set (At = 1), the network was
checked for learning and generalization abilities by separately counting the
fraction of correct classifications for patterns within (%L) and not included
(%G) in the training set, respectively. The classification of the o' input
pattern is considered correct if |O% — 7% < A, with A = 0.1.

Both the learning %L and generalization %( abilities of the network are
monitored as a function of time {. The learning process is terminated after =
presentations of the training set, either because %G = 100 has been achieved,
or because the network performance on the training set, as measured by

e = Z(@ﬂ T) (3.2)

satisfies the stopping criterion ¢ < 0.01.

Comparative results between the two error functions are illustrated for
p = 2 in figure 4. In both cases the networks produced by learning all
patterns in the training set (%L = 100) exhibited perfect generalization
ability (%G = 100). Note the significant reduction in learning time for the
relative entropy with respect to the traditional quadratic error function. This
accelerated learning was found in all cases.

Results summarized in table 1 correspond to several simulations for each
error function, all of them successful in learning (%L = 100). Results for
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Figure 4: Learning and generalization ability as a function of time ¢
for p = 2. Comparative results are shown for E;(W) and Eq(W).
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P g Fr, |
G| T WG| T
100 | 339 100 84
95 | 1995 91 | 593
90 | 2077 81 | 269
73 | 2161 74 | 225
68 | 2147 68 | 189

(=23 S-S LR W)

Table 1: Comparative results for learning contiguity with Ey and
Eq, averaged over successful runs (%L = 100). Learning time 7
is measured by the number of presentations of the full training set
needed to achieve ¢ < 0.01 or %G = 100.

EQ Er
%G|l RL] = |[%9G[%L] r
83 95 | 1447 | 91 100 | 1445

Table 2: Comparative results for learning contiguity with £, and Eg,
averaged over all runs for p = 2.

each value of p are averages over 10 runs with different starting points W,
The monotonic decrease in generalization ability with increasing p previously
observed for the quadratic error function [9] is also found here for the relative
entropy. Using this logarithmic error function for learning does not improve
the generalization ability of the resulting network. Its advantage resides in
systematic reductions in learning time 7, as large as an order of magnitude
for large p.

Learning contiguity with the network architecture of figure 3 is always
successful for p > 3: for both Ep and FEg the learning process leads to
configurations that satisfy E(IW) = 0 for all tried Starting points. For p =
2, the gradient descent algorithm often gets trapped in local minima with
E(W) > 0, and %L = 100 cannot be achieved. As shown by the results in
table 2, the gradient descent algorithm is less likely to get trapped in local
minima when applied to EL(PV)

We conjecture that a larger density of local minima that are not global
minima in Fg (W) is responsible for the more frequent failure in learning for
p = 2. This conjecture is supported by the fact that learning contiguity with
Ep required a smaller step size 7 than for Eg. A value of 5 = 0.25 used
for all runs corresponding to EQ(W) led to oscillations for EL(ﬁ/). That a
smaller value of n = 0.125 was required in this case indicates a smoother
error function, with less shallow local minima and narrower global minima,
as schematically illustrated in figure 5.

A decrease in the density of local minima for the logarithmic error func-
tion EL(W) is due in part to the cancellation between ¢'(U/‘*)) and O(1 —©)
in equation (2.22) for §(). Such cancellation requires the use of the logistic
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Figure 5: Schematic representation of the landscape defined by the
error functions Ey, and Eg in configuration space {W}.

transfer function of equation (2.24), and eliminates the spurious minima that
otherwise arise for @ = 1 when 7 = 0, and for @ =0 when 7 = 1.

4. Summary and discussion

Our numerical results indicate that the choice of the logarithmic error func-
tion K (W) over the quadratic error function E@(W} results in an improved
learning algorithm for layered neural networks. Such improvement can be
explained in terms of the characteristic steepness of the landscape defined by
each error function in configuration space {W}. A quantitative measure of
the average steepness of the E (W) surface is given by S =< |[VE(W W)| >. Re-
liable estimates of § from random samphng in {W} space yield §;,/Sg ~ 3/2.
The increased steepness of EL(I'V) over Eq(T/V) is in agreement with the
schematic landscape shown in figure 5, and explains the reduction in learn-
ing time found in our numerical simulations.

A steeper error function EL(W) has been shown to lead to an improved
learning algorithm when gradient descent is used to solve the E(W) =1
minimization problem. That the network design resulting from successful
learning does not exhibit improved generalization abilities can be understood
as follows. Consider the total error function

E=Y &= &+ ¥ & (4.1)

all o aeT agT

The first term includes all patterns in the training set T, and is the error
function I which is minimized by the learning algorithm. The second term
is the error made by the network on all patterns not in the training set, and
measures generalization ability. As shown in figure 6, equally valid solutlons
to the learning problem E(W') = 0 vary widely in their generalization abil-
ity as measured by E'(VV). We argue that the application of increasingly
sophisticated techniques to the learning problem posed as an unconstrained
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Figure 6: Valid solutions to the E(W) = 0 learning problem, indicated
by e, exhibit varying degrees of generalization ability as measured by
).

optimization problem does not lead to marked improvement in the general-
ization ability of the resulting network.

It is nevertheless desirable to use computationally efficient learning al-
gorithms. For gradient descent learning, such efficiency is controlled by the
steepness and density of local minima of the surface defined by E(WW) in con-
figuration space. Our work shows that notable reductions in learning time
can result from an appropriate choice of error function.

The question that remains open is whether the logarithmic error function
is generally to be preferred over the quadratic error function. The accelerated
learning found for the contiguity problem, and other test problems for which
we have performed comparative simulations, has been explained here as a
consequence of the smoothness and steepness of the surface £(W). We know
of no argument in support of EL(PT/) being always smoother than EQ(E’T/’);
the smoothness of the E(ﬁ") surface depends subtly on the problem, its
representation, and the choice of training set T. As for the steepness, the
argument presented in the Appendix proves that Ep (W) is indeed steeper
than EQ(VI‘/) in the vicinity of local minima, in support of the ubiquitous
reduction in learning time.
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Appendix
Consider the error function
m Nip
5= Z Ed;’, (A.1)
a=1j=1
with
df = 5 (05~ T7) (A.2)
for Eg, and
Tx ( ~T7)
di =T In—=- —-T= :
n0a+(1 77) In T=o9 (A.3)
for Ey,.

The effect of a discrepancy AY = OF — T* between target and output on

df is easily calculated, and can be written as

1

&5 =3 (A9 (A4)
for Fg, and
1

dy = 5 Ap (A2 +0((A%)?) (A.5)

for £y, 0 < 77 < 1. Both error functions are quadratic to lowest order in
A¥. But the parabollc trough that confines Of to the vicinity of T is much
stecpm for Ep than for Eg, since the funiction. AL =1/(T(1 - T"’)) satisfies
Ap > 4 in the interval 0 < 7;* < 1. This function reaches its minimum value
Ap =4 at 77 = 1/2, and diverges as T.* approaches 0, 1.

The quadratic expansion of equation (A.5) for £y, is not valid at 7%= 0, 1.
At the ends of the interval the correct expansion is

& = £A3 + 3 (A3 + (A7), (A6)

with the plus sign valid for 7 = 0, Of = A, and the minus sign valid for
77 =1, 0f = 1+ Af. For T¥ = 0,1 the confining effect of Ej, is again
stronger than that of Eg, due to the leading linear term.

The preceding analysis demonstrates that Ep,( C_).") is steeper than Eq(@.")
in the vicinity of the minima at O = T*. Since both functions depend
implicitly on the couplings {W} through the outputs {3}, it follows that
Er(W) is steeper than Eq(W). Note that the components of the gradient
V(W) are given by
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m ok od 005

-3

A (A7)
oW, "’ == awP

The factors 0%/ aw},f’ depend only on the processing of information along
the network, from layer £ to the top layer at £ = L, and are independent
of the choice of distance d* = d(O*,7%). An increase in the magnitude
of 8d§ /807 in the vicinity of OF = 7% thus results in an increase in the

magnitude of the gradient of E(W).

References

[1] E. B. Baum and F. Wilczek, “Supervised Learning of Probability Distribu-
tions by Neural Networks”, to appear in Proceedings of the IEEE Conference
on Neural Information Processing Systems - Natural and Synthetic, (Denver,
1987).

[2] J. J. Hopfield, “Learning Algorithms and Probability Distributions in Feed-
forward and Feed-back Networks”, Proc. Natl. Acad. Sci. USA, 84 (1987)
8429-8433.

[3] G. E. Hinton, “Connectionist Learning Procedures”, Technical Report CMU-
(CS-87-115.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal
Representations by Error Propagation”, in Parallel Distributed Processing:
Explorations in the Mierostructure of Cognition, (MIT Press, 1986).

[5] T. J. Sejnowski and C. R. Rosenberg, “Parallel Networks that Learn to
Pronounce English Text”, Complex Systems, 1 (1987) 145-168.

[6] A. J. Viterbi, Principles of Digital Communication and Coding, (McGraw-
Hill, 1979).

[7] K. Fukunaga, Introduction to Statistical Pattern Recognition, (Academic
Press, 1972).

[8] J. S. Denker, D. B. Schwartz, B. S. Wittner, S. A. Solla, R. E. Howard,
L. D. Jackel, and J. J. Hopfield, “Automatic Learning, Rule Extraction, and
Generalization”, Complex Systems, 1 (1987) 877-922.

[9] S. A. Solla, S. A. Ryckebusch, and D. B. Schwartz, “Learning and Gen-
eralization in Layered Neural Networks: the Contiguity Problem”, to be
published.

[10] T. Maxwell, C. L. Giles, and Y. C. Lee, “Generalization in Neural Networks:
the Contiguity Problem”, in Proceedings of the IEEE First International
Conference on Neural Networks, (San Diego, 1987).

[11] T. Grossman, R. Meir, and E. Domany, “Learning by Choice of Internal
Representations”, to be published.





