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The introduction of AlphaFold 2" has spurred a revolution in modelling the structure
of proteins and their interactions, enabling a huge range of applications in protein
modelling and design®®. Here we describe our AlphaFold 3 model with a substantially
updated diffusion-based architecture that is capable of predicting the joint structure
of complexes including proteins, nucleic acids, small molecules, ions and modified
residues. The new AlphaFold model demonstrates substantially improved accuracy

over many previous specialized tools: far greater accuracy for protein-ligand
interactions compared with state-of-the-art docking tools, much higher accuracy

for protein—nucleic acid interactions compared with nucleic-acid-specific predictors
and substantially higher antibody-antigen prediction accuracy compared with
AlphaFold-Multimerv.2.3%%, Together, these results show that high-accuracy
modelling across biomolecular space is possible within a single unified deep-learning

framework.

Accurate models of biological complexes are critical to our under-
standing of cellular functions and for the rational design of thera-
peutics®*’. Enormous progress has beenachieved in protein structure
prediction with the development of AlphaFold’, and the field has
grown tremendously with a number of later methods that build on
theideas and techniques of AlphaFold 2 (AF2)° 2, Almost immediately
after AlphaFold became available, it was shown that simple input
modifications would enable surprisingly accurate protein interaction
predictions® ™ and that training AF2 specifically for protein inter-
action prediction yielded a highly accurate system’.

These successes lead to the question of whether it is possible to
accurately predict the structure of complexes containing amuchwider
range of biomolecules, including ligands, ions, nucleic acids and modi-
fied residues, within a deep-learning framework. A wide range of pre-
dictors for various specificinteraction types has been developed'* 2,
as well as one generalist method developed concurrently with the
present work?, but the accuracy of such deep-learning attempts has
been mixed and often below that of physics-inspired methods®*.,
Almost all of these methods are also highly specialized to particular
interaction types and cannot predict the structure of general biomo-
lecular complexes containing many types of entities.

Here we present AlphaFold 3 (AF3)—a model that is capable of
high-accuracy prediction of complexes containing nearly all molecular
types presentinthe Protein Data Bank® (PDB) (Fig.1a,b). Inallbut one
category, it achieves a substantially higher performance than strong
methods that specialize in just the given task (Fig. 1c and Extended
Data Table 1), including higher accuracy at protein structure and the
structure of protein-protein interactions.

This is achieved by a substantial evolution of the AF2 architec-
ture and training procedure (Fig. 1d) both to accommodate more
general chemical structures and to improve the data efficiency of
learning. The system reduces the amount of multiple-sequence
alignment (MSA) processing by replacing the AF2 evoformer with
the simpler pairformer module (Fig. 2a). Furthermore it directly
predicts the raw atom coordinates with a diffusion module, replac-
ing the AF2 structure module that operated on amino-acid-specific
frames and side-chain torsion angles (Fig. 2b). The multiscale
nature of the diffusion process (low noise levels induce the net-
work to improve local structure) also enable us to eliminate
stereochemical losses and most special handling of bonding pat-
terns in the network, easily accommodating arbitrary chemical
components.
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Fig.1|AF3accurately predicts structures across biomolecular complexes.
a,b, Examplestructures predicted using AF3. a, Bacterial CRP/FNR family
transcriptional regulator protein bound to DNA and cGMP (PDB 7PZB;
full-complex LDDT¥, 82.8; global distance test (GDT)*%,90.1). b, Human
coronavirus OC43 spike protein, 4,665 residues, heavily glycosylated and
bound by neutralizing antibodies (PDB 7PNM; full-complex LDDT, 83.0; GDT,
83.1).c, AF3 performance on PoseBusters (v.1, August 2023 release), our recent
PDB evaluationset and CASP15RNA. Metrics are as follows: percentage of
pocket-aligned ligand r.m.s.d. <2 A for ligands and covalent modifications;
interface LDDT for protein-nucleic acid complexes; LDDT for nucleic acid and
proteinmonomers; and percentage DockQ > 0.23 for protein-protein and
protein-antibody interfaces. Allscores are reported from the top confidence-
ranked sample out of five model seeds (each with five diffusion samples),
except for protein-antibody scores, whichwere ranked across 1,000 model
seeds for bothmodels (each AF3 seed with five diffusion samples). Sampling

Network architecture and training

The overall structure of AF3 (Fig. 1d and Supplementary Methods 3)
echoes that of AF2, with a large trunk evolving a pairwise representa-
tion of the chemical complex followed by a structure module that uses
the pairwise representation to generate explicit atomic positions, but
there arelarge differencesin each major component. These modifica-
tions were driven both by the need to accommodate a wide range of
chemical entities without excessive special casing and by observations
of AF2 performance with different modifications. Within the trunk,
MSA processing is substantially de-emphasized, with a much smaller
and simpler MSA embedding block (Supplementary Methods 3.3).
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andranking details are provided in the Methods. For ligands, nindicates the
number of targets; for nucleic acids, nindicates the number of structures; for
modifications, nindicates the number of clusters; and for proteins, nindicates
the number of clusters. The bar heightindicates the mean; error bars indicate
exactbinomial distribution 95% confidence intervals for PoseBusters and by
10,000 bootstrap resamples for all others. Significance levels were calculated
using two-sided Fisher’s exact tests for PoseBusters and using two-sided
Wilcoxon signed-rank tests for all others; ***P < 0.001, **P < 0.01. Exact Pvalues
(fromleft to right) are as follows: 2.27 x1072,2.57 x1073,2.78 x 1073,7.28 x 1072,
1.81x1078,6.54 x10 and 1.74 x 107>*. AF-M 2.3, AlphaFold-Multimerv.2.3;
dsDNA, double-stranded DNA.d, AF3 architecture for inference. The rectangles
represent processing modules and the arrows show the data flow. Yellow, input
data; blue, abstract network activations; green, output data. The coloured balls
represent physical atom coordinates.

Compared with the original evoformer from AF2, the number of blocks
isreduced to four, the processing of the MSA representation uses an
inexpensive pair-weighted averaging and only the pair representa-
tion is used for later processing steps. The ‘pairformer’ (Fig. 2a and
Supplementary Methods 3.6) replaces the evoformer of AF2 as the
dominant processing block. It operates only on the pair representation
andthesingle representation; the MSA representationis not retained
and all information passes through the pair representation. The pair
processing and the number of blocks (48) is largely unchanged from
AF2. The resulting pair and single representation together with the
input representation are passed to the new diffusion module (Fig. 2b)
that replaces the structure module of AF2.
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Fig.2|Architectural and training details. a, The pairformer module.

Input and output: pair representation with dimension (n, n, ¢) and single
representation with dimension (n, ¢). nis the number of tokens (polymer
residues and atoms); cis the number of channels (128 for the pair representation,
384 forthe single representation). Each of the 48 blocks has anindependent set
oftrainable parameters. b, The diffusion module. Input: coarse arrays depict
per-tokenrepresentations (green, inputs; blue, pair; red, single). Fine arrays
depict per-atomrepresentations. The coloured balls represent physical atom
coordinates. Cond., conditioning; rand. rot. trans., random rotation and
translation; seq., sequence. c, The training set-up (distogram head omitted)

The diffusion module (Fig. 2b and Supplementary Methods 3.7) oper-
ates directly on raw atom coordinates, and on a coarse abstract token
representation, without rotational frames or any equivariant process-
ing. We had observed in AF2 that removing most of the complexity
of the structure module had only a modest effect on the prediction
accuracy, and maintaining the backbone frame and side-chain torsion
representation add quite a bit of complexity for general molecular
graphs. Similarly AF2 required carefully tuned stereochemical viola-
tion penalties during training to enforce chemical plausibility of the
resulting structures. We use a relatively standard diffusion approach™
inwhich the diffusion modelis trained to receive ‘noised’ atomic coor-
dinates and then predict the true coordinates. This task requires the

—@_.

Loss
Metrics

starting from the end of the network trunk. The coloured arrays show activations
fromthe network trunk (green, inputs; blue, pair; red, single). The blue arrows
show abstract activation arrays. The yellow arrows show ground-truth data.
Thegreenarrows show predicted data. The stop sign represents stopping of
the gradient. Both depicted diffusion modules share weights. d, Training
curves forinitial training and fine-tuning stages, showing the LDDT on our
evaluationsetasafunction of optimizer steps. The scatter plot shows the raw
datapoints and the lines show the smoothed performance using amedian filter
withakernelwidth of nine datapoints. The crosses mark the point at which the
smoothed performance reaches 97% of its initial training maximum.

network tolearnproteinstructure atavariety of length scales, whereby
the denoising task at small noise emphasizes understanding very local
stereochemistry and the denoising task at high noise emphasizes the
large-scale structure of the system. At the inference time, random noise
issampled and thenrecurrently denoised to produce afinal structure.
Importantly, this is a generative training procedure that produces a
distribution of answers. This means that, for each answer, the local
structure will be sharply defined (for example, side-chain bond geom-
etry) evenwhen the network is uncertain about the positions. For this
reason, we are able to avoid both torsion-based parametrizations of
the residues and violation losses on the structure, while handling the
full complexity of general ligands. Similarly to some recent work®*,
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Fig.3|Examples of predicted complexes. Selected structure predictions
from AF3.Predicted protein chains areshowninblue (predicted antibody in
green), predicted ligands and glycansin orange, predicted RNAin purple and
theground truthis showningrey.a, Human 40S small ribosomal subunit (7,663
residues) including 18S ribosomal RNA and Met-tRNA** (opaque purple)ina
complexwith translationinitiation factors elF1A and elF5B (opaque blue; PDB
7TQL; full-complex LDDT, 87.7; GDT, 86.9). b, The glycosylated globular portion

we find that no invariance or equivariance with respect to global
rotations and translation of the molecule are required in the archi-
tecture and we therefore omit them to simplify the machine learning
architecture.

The use of agenerative diffusionapproach comeswithsometechnical
challenges that we needed to address. The biggestissueis that genera-
tive models are prone to hallucination®, whereby the model may invent
plausible-looking structure evenin unstructured regions. To counteract
this effect, we use a cross-distillation method in which we enrich the
training data with structures predicted by AlphaFold-Multimer (v.2.3)%,
In these structures, unstructured regions are typically represented
by long extended loops instead of compact structures, and training
on them ‘teaches’ AF3 to mimic this behaviour. This cross-distillation
greatly reduced the hallucination behaviour of AF3 (Extended Data
Fig.1for disorder prediction results on the CAID 2% benchmark set).

We also developed confidence measures that predict the atom-level
and pairwise errorsinour final structures. In AF2, thiswas done directly
by regressing the error in the output of the structure module during
training. However, this procedure is not applicable to diffusion training,
asonlyasingle step of the diffusionis trained instead of a full-structure
generation (Fig. 2c). Toremedy this, we developed a diffusion ‘rollout’
procedure for the full-structure prediction generation during training
(using a larger step size than normal; Fig. 2c (mini-rollout)). This pre-
dicted structureis then used to permute the symmetric ground-truth
chains and ligands, and to compute the performance metrics to train
the confidence head. The confidence head uses the pairwise representa-
tionto predict amodified local distance difference test (pLDDT) and a
predicted aligned error (PAE) matrix asin AF2, aswell asadistance error
matrix (PDE), whichis the errorinthe distance matrix of the predicted
structure as compared to the true structure (details are provided in
Supplementary Methods 4.3).

Figure 2d shows that, during initial training, the model learns quickly
to predict the local structures (allintrachain metrics go up quickly and
reach 97% of the maximum performance within the first 20,000 training
steps), while the model needs considerably longer to learn the global
constellation (the interface metrics go up slowly and protein-protein
interface LDDT passes the 97% bar only after 60,000 steps). During
AF3 development, we observed that some model abilities topped out
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ofan EXTL3 homodimer (PDB 7AU2; mean pocket-aligned r.m.s.d., 1.10 A).

¢, Mesothelin C-terminal peptide bound to the monoclonal antibody 15B6
(PDB7U8C; DockQ, 0.85).d, LGK974, a clinical-stage inhibitor, bound to
PORCNinacomplex withthe WNT3A peptide (PDB 7URD; ligand r.m.s.d.,
1.00 A). e, (55,6S)-07-sulfo DADH bound to the AziU3/U2 complex with anovel
fold (PDB 7WUX; ligand r.m.s.d., 1.92 A).f, Analogue of NIH-12848 bound to an
allosteric site of PISP4Ky (PDB 7QIE; ligand r.m.s.d., 0.37 A).

relatively early and started to decline (most likely due to overfitting to
the limited number of training samples for this capability), while other
abilities were still undertrained. We addressed this by increasing or
decreasing the sampling probability for the corresponding training
sets (Supplementary Methods 2.5.1) and by performing early stopping
using aweighted average of all of the above metrics and some additional
metricstoselect the best model checkpoint (Supplementary Table 7).
The fine-tuning stages with the larger crop sizesimprove the model on
allmetrics with an especially high uplift on protein-proteininterfaces
(Extended DataFig. 2).

Accuracy across complex types

AF3 can predict structures from input polymer sequences, residue
modifications and ligand SMILES (simplified molecular-input line-entry
system). InFig. 3 we show aselection of examples highlighting the abil-
ity of the model to generalize to a number of biologically important
and therapeutically relevant modalities. In selecting these examples,
we considered novelty in terms of the similarity of individual chains
and interfaces to the training set (additional information is provided
inSupplementary Methods 8.1).

We evaluated the performance of the system on recent interface-
specific benchmarks for each complex type (Fig. 1c and Extended
Data Table 1). Performance on protein-ligand interfaces was evalu-
ated on the PoseBusters benchmark set, which is composed of 428
protein-ligand structures released to the PDB in 2021 or later. As our
standard training cut-off date is in 2021, we trained a separate AF3
model with an earlier training-set cutoff (Methods). Accuracy on the
PoseBusters set is reported as the percentage of protein-ligand pairs
with pocket-aligned ligand root mean squared deviation (r.m.s.d.) of
less than 2 A. The baseline models come in two categories: those that
use only protein sequence and ligand SMILES as an input and those that
additionally leak information fromthe solved protein-ligand test struc-
ture. Traditional docking methods use the latter privileged information,
even though thatinformation would not be available in real-world use
cases. Evenso, AF3 greatly outperforms classical docking tools such as
Vina®~*® even while not using any structural inputs (Fisher’s exact test,
P=2.27 x107%) and greatly outperforms all other true blind docking
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like RoseTTAFold All-Atom (P =4.45 x 107%). Extended Data Fig. 3 shows
three examplesin which AF3 achieves accurate predictions but docking
tools Vinaand Gold do not¥. PoseBusters analysis was performed using
atraining cut-off of 30 September 2019 for AF3 to ensure that the model
was not trained on any PoseBusters structures. To compare with the
RoseTTAFold All-Atom results, we used PoseBusters version 1. Version
2 (crystal contacts removed from the benchmark set) results including
quality metrics are shownin Extended DataFig.4b-fand Extended Data
Table 1. We use multiple seeds to ensure correct chirality and avoid
slight protein-ligand clashing (as opposed to a method like diffusion
guidance to enforce) but we are typically able to produce high-quality
stereochemistry. Separately, we also train a version of AF3 that receives
the ‘pocketinformation’ as used insome recent deep-learning work?*2
(theresults are shown in Extended Data Fig. 4a).

AF3 predicts protein-nucleic complexes and RNA structures with
higher accuracy than RoseTTAFold2NA® (Fig. 1c (second plot)). As
RoseTTAFold2NA is validated only on structures below 1,000 resi-
dues, we use only structures below 1,000 residues from our recent PDB
evaluation set for this comparison (Methods). AF3 is able to predict
protein-nucleic structures with thousands of residues, an example
of which is shown in Fig. 3a. Note that we do not compare directly to
RoseTTAFold All-Atom, but benchmarks indicate that RoseTTAFold
All-Atom is slightly less accurate than RoseTTAFold2NA for nucleic
acid predictions®.

We also evaluated AF3 performance on the ten publicly available
Critical Assessment of Structure Prediction 15 (CASP15) RNA targets:
we achieve a higher average performance than RoseTTAFold2NA and
Alchemy RNAY (the best Al-based submission in CASP15"%*") on the
respective common subsets of our and their predictions (detailed
results are shown in Extended Data Fig. 5a). We did not reach the
performance of the best human-expert-aided CASP15 submission
Alchemy_RNA2% (Fig. 1c (centre left)). Owing to limited dataset sizes,
we do not report significance test statistics here. Further analysis of
the accuracy of predicting nucleic acids alone (without proteins) is
shown in Extended Data Fig. 5b.

Covalent modifications (bonded ligands, glycosylation, and modi-
fied protein residues and nucleic acid bases) are also accurately pre-
dicted by AF3 (Fig. 1c (centre right)). Modifications include those to
any polymer residue (protein, RNA or DNA). We reportaccuracy as the
percentage of successful predictions (pocket r.m.s.d. <2 A). We apply
quality filters tothe bonded ligands and glycosylation dataset (as does
PoseBusters): weinclude only ligands with high-quality experimental
data (ranking_model_fit > 0.5, according to the RCSB structure valida-
tion report, thatis, X-ray structures with a model quality above the
median). As with the PoseBusters set, the bonded ligands and glyco-
sylation datasets are not filtered by homology to the training dataset.
Filtering on the basis of the bound polymer chain homology (using
polymer template similarity < 40) yielded only five clusters for bonded
ligands and seven clusters for glycosylation. We exclude multi-residue
glycans here because the RCSB validation report does not provide a
ranking_model_fit value for them. The percentage of successful pre-
dictions (pocketr.m.s.d. <2 A) for multi-residue glycans on all-quality
experimental datais 42.1% (n =131 clusters), whichis slightly lower than
the successrate for single-residue glycans on all-quality experimental
data of46.1% (n =167). The modified residues dataset is filtered similarly
to our other polymer test sets: it contains only modified residues in
polymer chains with low homology to the training set (Methods). See
Extended Data Table1for detailed results, and Extended Data Fig. 6 for
examples of predicted protein, DNA and RNA structures with covalent
modifications, including analysis of the impact of phosphorylation
on predictions.

While expanding in modelling abilities, AF3 has also improved in
protein complex accuracy relative to AlphaFold-Multimer (v.2.3)5.
Generally, protein-protein prediction success (DockQ > 0.23)** has
increased (paired Wilcoxon signed-rank test, P=1.8 x 107'8), with

antibody-protein interaction prediction in particular showing a
marked improvement (Fig. 1c (right); paired Wilcoxon signed-rank
test, P=6.5x 107, predictions top-ranked from 1,000 rather than the
typical 5seeds; further details are provided in Fig. 5a). Protein monomer
LDDT improvement is also significant (paired Wilcoxon signed-rank
test, P=1.7 x107**). AF3 has a very similar dependence on MSA depth
to AlphaFold-Multimer v.2.3; proteins with shallow MSAs are predicted
with lower accuracy (acomparison of the dependence of single-chain
LDDT on MSA depthis shown in Extended Data Fig. 7a).

Predicted confidences track accuracy

Aswith AF2, AF3 confidence measures are well calibrated with accuracy.
Our confidence analysis is performed on the recent PDB evaluation
set, with no homology filtering and including peptides. The ligands
categoryisfiltered to high-quality experimental structures as described
above, and considers standard non-bonded ligands only. See Extended
DataFig. 8 for a similar assessment on bonded ligand and other inter-
faces. All statistics are cluster-weighted (Methods) and consider the
top-ranked prediction only (ranking details are provided in Supple-
mentary Methods 5.9.3).

In Fig. 4a (top row), we plot the chain pair interface-predicted TM
(ipTM) score* (Supplementary Methods 5.9.1) against interface accu-
racy measures: protein—protein DockQ, protein—nucleic interface
LDDT (iLDDT) and protein-ligand success, with success defined as the
percentage of examples under thresholded pocket-aligned r.m.s.d.
values.InFig.4a (bottomrow), we plot the average pLDDT per protein,
nucleotide or ligand entity against our bespoke LDDT_to_polymer
metric (metrics details are provided in the Methods), whichis closely
related to the training target of the pLDDT predictor.

In Fig. 4b-e, we highlight a single example prediction of 7T82, in
which per-atom pLDDT colouring identifies unconfident chain tails,
somewhat confident interfaces and otherwise confident secondary
structure.InFig.4c, the same predictionis coloured by chain, along with
DockQinterface scoresinFig.4d and per-chain colouring displayed on
the axes for reference. We see from Fig. 4e that PAE confidence is high
for pink-grey and blue-orange residue pairs for which DockQ > 0.7,
and least confident about pink-orange and pink-blue residue pairs
thathave DockQ = 0. A similar PAE analysis of an example with protein
and nucleic acid chains is shown in Extended Data Fig. 5¢c,d.

Model limitations

We note model limitations of AF3 with respect to stereochemistry,
hallucinations, dynamics and accuracy for certain targets.

On stereochemistry, we note two main classes of violations. The
firstisthat the model outputs do not always respect chirality (Fig. 5Sb),
despite the model receiving reference structures with correct chirality
as input features. To address this in the PoseBusters benchmark, we
included a penalty for chirality violation in our ranking formula for
model predictions. Despite this, we still observe a chirality violation
rate of 4.4% in the benchmark. The second class of stereochemical
violationsisatendency of the model to occasionally produce overlap-
ping (clashing) atoms in the predictions. This sometimes manifests
as extreme violations in homomers in which entire chains have been
observed to overlap (Fig. 5e). Penalizing clashes during ranking (Sup-
plementary Methods 5.9.3) reduces the occurrence of this failure mode
but does not eliminate them. Almost all remaining clashes occur for
protein-nucleic complexes with both greater than 100 nucleotides
and greater than 2,000 residues in total.

We note that the switch from the non-generative AF2 model to the
diffusion-based AF3 modelintroduces the challenge of spurious struc-
tural order (hallucinations) in disordered regions (Fig. 5d and Extended
DataFig.1). Although hallucinated regions are typically marked as very
low confidence, they can lack the distinctive ribbon-like appearance
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Fig.4|AF3 confidencestrack accuracy.a, Theaccuracy of protein-containing
interfaces as afunction of chain pairipTM (top). Bottom, the LDDT-to-polymer
accuracy was evaluated for various chain types as a function of chain-averaged
pLDDT. The box plots show the 25-75% confidence intervals (box limits), the
median (centreline) and the 5-95% confidence intervals (whiskers). n values
reportthe number of clustersin eachband.b, The predicted structure of PDB

that AF2 produces in disordered regions. To encourage ribbon-like
predictions in AF3, we use distillation training from AF2 predictions,
and we add a ranking term to encourage results with more solvent
accessible surface area.

Akey limitation of protein structure prediction models is that they
typically predict static structures asseenin the PDB, not the dynamical
behaviour of biomolecular systemsinsolution. This limitation persists
for AF3, in which multiple random seeds for either the diffusion head
or the overall network do not produce an approximation of the solu-
tion ensemble.

Insome cases, the modelled conformational state may not be correct
or comprehensive given the specified ligands and other inputs. For
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7T82 coloured by pLDDT (orange, 0-50; yellow, 50-70; cyan, 70-90; and
blue, 90-100). ¢, The same prediction coloured by chain.d, DockQscores for
protein-proteininterfaces. e, PAE matrix of same prediction (darkeris more
confident), with chain colouring of contheside bars. The dashed black lines
indicate the chainboundaries.

example, E3 ubiquitin ligases natively adopt an open conformation
in an apo state and have been observed only in a closed state when
boundtoligands, but AF3 exclusively predicts the closed state for both
holo and apo systems*? (Fig. 5¢). Many methods have been developed,
particularly around MSA resampling, that assist in generating diversity
from previous AlphaFold models** and may also assist in multistate
prediction with AF3.

Despite the large advance in modelling accuracy in AF3, there are
still many targets for which accurate modelling can be challenging.
To obtain the highest accuracy, it may be necessary to generate a
large number of predictions and rank them, which incurs an extra
computational cost. A class of targets in which we observe this effect
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Fig.5|Modellimitations. a, Antibody prediction quality increases with the
number of model seeds. The quality of top-ranked, low-homology antibody-
antigeninterface predictions asafunction ofthe number of seeds. Each
datapointshows the mean over1,000 random samples (with replacement) of
seeds torank over, out of1,200 seeds. Confidence intervals are 95% bootstraps
over10,000 resamples of cluster scores at each datapoint. Samples per
interface are ranked by protein-protein ipTM. Significance tests were
performed using by two-sided Wilcoxon signed-rank tests. n= 65 clusters.
Exact Pvalues were as follows: 2.0 x 10~ (percentage correct) and P= 0.009
(percentage very highaccuracy). b, Prediction (coloured) and ground-

truth (grey) structures of Thermotoga maritima o-glucuronidase and
beta-D-glucuronicacid—atarget from the PoseBusters set (PDB: 7CTM). AF3
predictsalpha-D-glucuronicacid; the differing chiral centreisindicated by an
asterisk. The prediction shownis top-ranked by ligand-proteinipTMand with a

strongly is antibody-antigen complexes, similar to other recent work*.
Figure 5ashowsthat, for AF3, top-ranked predictions keep improving
withmore model seeds, even at asmany as1,000 (Wilcoxon signed-rank
test between 5and 1,000 seeds, P=2.0 x 107 for percentage correct
and P=0.009 for percentage very high accuracy; ranking by protein-
protein interface ipTM). This large improvement with many seeds
is not observed in general for other classes of molecules (Extended
DataFig. 7b). Using only one diffusion sample per model seed for the
AF3 predictions rather than five (not illustrated) does not change
the results significantly, indicating that running more model seeds
is necessary for antibody score improvements, rather than just more
diffusion samples.

chirality and clash penalty. ¢, Conformation coverage is limited. Ground-truth
structures (grey) of cerebloninopen (apo, PDB: 8CVP; left) and closed (holo
mezigdomide-bound, PDB: 8D7U; right) conformations. Predictions (blue) of
bothapo (with10 overlaid samples) and holo structures arein the closed
conformation. The dashed lines indicate the distance between the N-terminal
Lon protease-like and C-terminal thalidomide-binding domain.d, Anuclear
porecomplexwith1,854 unresolved residues (PDB: 7F60). The ground truth
(left) and predictions from AlphaFold-Multimerv.2.3 (middle) and AF3 (right)
areshown. e, Prediction of a trinucleosome with overlapping DNA (pink) and
protein (blue) chains (PDB: 7PEU); highlighted are overlapping protein chains
Band)andself-overlapping DNA chain AA. Unless otherwise stated, predictions
aretop-ranked by our global complex ranking metric with chiral mismatch and
steric clash penalties (Supplementary Methods 5.9.1).

Discussion

The core challenge of molecular biology is to understand and ultimately
regulate the complex atomicinteractions of biological systems. The AF3
model takes alarge stepin this direction, demonstrating thatitis pos-
sible toaccurately predict the structure of a wide range of biomolecular
systems in a unified framework. Although there are still substantial
challengesto achieve highly accurate predictions across allinteraction
types, we demonstrate thatitis possible tobuild adeep-learning system
thatshows strong coverage and generalization for all of these interac-
tions. We also demonstrate that the lack of cross-entity evolution-
ary information is not a substantial blocker to progress in predicting

Nature | Vol 630 | 13 June 2024 | 499


https://doi.org/10.2210/pdb7CTM/pdb
https://doi.org/10.2210/pdb8CVP/pdb
https://doi.org/10.2210/pdb8D7U/pdb
https://doi.org/10.2210/pdb7F60/pdb
https://doi.org/10.2210/pdb7PEU/pdb

Article

theseinteractions and, moreover, substantialimprovementin antibody
results suggests AlphaFold-derived methods are able to model the
chemistry and physics of classes of molecular interactions without
dependence on MSAs. Finally, the large improvementin protein-ligand
structure prediction shows thatitis possible to handle the wide diver-
sity of chemical space within a general deep-learning framework and
withoutresorting to anartificial separation between protein structure
prediction and ligand docking.

The development of bottom-up modelling of cellular components
is a key step in unravelling the complexity of molecular regulation
within the cell, and the performance of AF3 shows that developing the
right deep-learning frameworks can massively reduce the amount of
datarequired to obtain biologically relevant performance on these
tasks and amplify the impact of the data already collected. We expect
that structural modelling will continue to improve not only due to
advancesindeep learning but also because continuing methodologi-
cal advances in experimental structure determination, such as the
substantialimprovementsin cryo-electron microscopy and tomogra-
phy, will provide a wealth of new training data to further the improve
the generalization ability of such models. The parallel developments
of experimental and computational methods promise to propel us
furtherinto an era of structurally informed biological understanding
and therapeutic development.
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Methods

Full algorithm details

Extensive explanations of the components are available in Supplemen-
tary Methods 2-5. Moreover, pseudocodeis available in Supplementary
Algorithms 1-31, network diagrams in Figs. 1d and 2a-c and Supple-
mentary Fig. 2, input features in Supplementary Table 5and additional
hyperparameters for training in Supplementary Tables 3,4 and 7.

Training regime

No structural data used during training were released after 30 Sep-
tember 2021 and, for the model used in PoseBusters evaluations, we
filtered out PDB* structures released after 30 September 2021. One
optimizer step uses aminibatch of 256 input data samples and during
initial training 256 x 48 =12,288 diffusion samples. For fine-tuning, the
number of diffusion samplesis reduced to 256 x 32=8,192. The model is
trainedin three stages—the initial training with a crop size of 384 tokens
and two sequential fine tuning stages with crop sizes of 640 and 768
tokens. Further details are provided in Supplementary Methods 5.2.

Inference regime
Noinference time templates or reference ligand position features were
released after 30 September 2021, and in the case of PoseBusters evalu-
ation, anearlier cut-off date of 30 September 2019 was used. The model
canbe runwithdifferent random seeds to generate alternative results,
with a batch of diffusion samples per seed. Unless otherwise stated,
allresults are generated by selecting the top confidence sample from
running 5seeds of the same trained model, with 5 diffusion samples per
modelseed, for atotal of 25samples to choose from. Standard crystal-
lization aids are excluded from predictions (Supplementary Table 8).
Results are shown for the top-ranked sample and sample ranking
depends on whether trying to select the overall best output globally,
orthebest output for some chain, interface or modified residue. Global
ranking uses a mix of pTM and ipTM along with terms to reduce cases
withlarge numbers of clashes and increase rates of disorder; individual
chain ranking uses a chain specific pTM measure; interface ranking
uses a bespoke ipTM measure for the relevant chain pair; and modi-
fied residue ranking uses average pLDDT over the residue of interest
(Supplementary Methods 5.9.3).

Metrics

Evaluation compares a predicted structure to the corresponding
ground-truth structure. If the complex contains multiple identical
entities, assignment of the predicted units to the ground-truth units
is found by maximizing LDDT. Assignment in local symmetry groups
of atoms in ligands is solved by exhaustive search over the first 1,000
per-residue symmetries as given by RDKit.

We measure the quality of the predictions with DockQ, LDDT or
pocket-aligned r.m.s.d. For nucleic-protein interfaces, we measure
interface accuracy throughiLDDT, whichis calculated from distances
between atoms across different chains in the interface. DockQ and
iLDDT are highly correlated (Extended Data Fig. 9), so the standard
cut-offs for DockQ can be translated to equivalent iLDDT cut-offs.
Nucleicacid LDDTs (intrachains and interface) were calculated with an
inclusion radius of 30 A compared with the usual 15 A used for proteins,
owingtotheir larger scale. For confidence calibration assessment, we
use abespoke LDDT (LDDT_to_polymer) metric that considers differ-
ences from each atom of a given entity to any C* or C1’ polymer atom
withinitsinclusionradius. Thisis closely related to how the confidence
predictionis trained (Supplementary Methods 4.3.1).

Pocket-alignedr.m.s.d.is computed as follows: the pocket is defined
asall heavy atoms within 10 A of any heavy atom of the ligand, restricted
tothe primary polymer chain for the ligand or modified residue being
scored, and further restricted to only backbone atoms for proteins.
The primary polymer chain is defined variously: for PoseBusters,

itis the protein chain with the most atoms within10 A of the ligand; for
bonded ligand scores, it is the bonded polymer chain; and for modified
residues, it is the chain in which the residue is contained (minus that
residue). The pocket is used to align the predicted structure to the
ground-truth structure with least-squares rigid alignment and then
ther.m.s.d.is computed on all heavy atoms of the ligand.

Recent PDB evaluation set

General model evaluation was performed on our recent PDB set consist-
ing of 8,856 PDB complexes released between1May 2022 and 12 January
2023. The set contains almost all PDB complexes released during that
period that are less than 5,120 model tokens in size (Supplementary
Methods 6.1). Single chains and interfaces within each structure were
scored separately rather than only looking at full complex scores, and
clustering was then applied to chains and interfaces so that scores could
be aggregated first within clusters and then across clusters for mean
scores, or using a weighting of inverse cluster size for distributional
statistics (Supplementary Methods 6.2 and 6.4).

Evaluation on ligands excludes standard crystallization aids (Sup-
plementary Table 8), our ligand exclusion list (Supplementary Table 9)
andglycans (Supplementary Table 10). Bonded and non-bonded ligands
areevaluated separately. lons are only included when specifically men-
tioned (Supplementary Table 11).

Therecent PDBsetisfiltered to alow homology subset (Supplemen-
tary Methods 6.1) for some results where stated. Homology is defined
as sequence identity to sequences in the training set and is measured
by template search (Supplementary Methods 2.4). Individual poly-
mer chains in evaluation complexes are filtered out if the maximum
sequenceidentity tochainsinthe training setis greater than40%, where
sequence identity is the percentage of residues in the evaluation set
chain that are identical to the training set chain. Individual peptide
chains (protein chains with less than 16 residues) are always filtered
out. For polymer-polymer interfaces, if both polymers have greater
than 40% sequence identity to two chains in the same complex in the
training set, thentheinterfaceisfiltered out. For interfacestoapeptide,
the interface is filtered out if the non-peptide entity has greater than
40% sequence identity to any chain in the training set.

To compare the quality of prediction of protein-protein interfaces
and protein monomers against that of AlphaFold-Multimer (v.2.3)%, and
to compare the dependence of single-protein-chain prediction quality
on MSA depth, we restrict the low-homology recent PDB set to com-
plexes with fewer than 20 protein chains and fewer than 2,560 tokens.
We compare against unrelaxed AlphaFold-Multimerv.2.3 predictions.

To study antibody-antigen interface prediction, we filter the low
homology recent PDB set to complexes that contain at least one
protein—-protein interface where one of the protein chains is in one
of the two largest PDB chain clusters (these clusters are representa-
tive of antibodies). We further filter to complexes with at most 2,560
tokens and with no unknown amino acids in the PDB to allow extensive
comparison against relaxed predictions of AlphaFold-Multimer v2.3.
Thatleaves 71 antibody-antigen complexes, containing 166 antibody-
antigen interfaces spanning 65 interface clusters.

MSA depth analysis (Extended Data Fig. 7a) was based on computing
the normalized number of effective sequences (N,¢) for each position of
aquerysequence. Per-residue N, values were obtained by counting the
number of non-gap residues in the MSA for this position and weighting
the sequences using the Nsscheme*® witha threshold of 80% sequence
identity measured on the region that is non-gap in either sequence.

Nucleicacid prediction baseline

Forbenchmarking performance onnucleic acid structure prediction,
we report baseline comparisons to an existing machine learning sys-
tem for protein-nucleic acid and RNA tertiary structure prediction,
RoseTTAFold2NA', We run the open source RF2NA with the same
MSAs as those that were used for AF3 predictions. For comparison
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between AF3 and RF2NA, a subset of our recent PDB set was chosen
to meet the RF2NA criteria (<1,000 total residues and nucleotides).
AsRF2NA was not trained to predict systems with DNA and RNA, analy-
sisis limited to targets with only one nucleic acid type. No system was
publicly available at time of writing for baseline comparisons on data
with arbitrary combinations of biomolecular types in PDB.

As an additional baseline for RNA tertiary structure prediction,
we evaluate AF3 performance on CASP15 RNA targets that were pub-
licly available as of 1 December 2023 (R1116/8595, R1117/8FZA, R1126
(downloaded from the CASP15 website https://predictioncenter.org/
caspl15/TARGETS_PDB/R1126.pdb), R1128/8BTZ, R1136/7Z}4, R1138/
[7PTK/7PTL], R1189/7YR7 and R1190/7YR6). We compare the top-1
ranked predictions and, where multiple ground-truth structures exist
(R1136), the prediction is scored against the closest state. We display
comparisons to RF2NA as a representative machine learning system;
Alchemy_RNA2 asthe top performing entrant with humanintervention;
and Alchemy_RNA as the top performing machine learning system. All
entrants’ predictions were downloaded from the CASP website and
scored internally.

PoseBusters

While other analyses used an AlphaFold model trained on PDB data
released before a cut-off of 30 September 2021, our PoseBusters analy-
siswas conducted on a model (with identical architecture and similar
training schedule) differing only in the use of an earlier 30 Septem-
ber 2019 cut-off. This analysis therefore did not include training data,
inference time templates or ‘ref_pos’ features released after this date.

Inference was performed on the asymmetric unit from specified
PDBs, with the following minor modifications. In several PDB files,
chains clashing with the ligand of interest were removed (701T, 7PUV,
7SCW, 7WJB, 7ZXV, 8AIE). Another PDB entry (8F4J) was too large to
inference the entire system (over 5,120 tokens), so we included only
protein chains within 20 A of the ligand of interest. Five model seeds,
eachwith five diffusion samples, were produced per target, resulting in
25 predictions, which were ranked by quality and predicted accuracy:
theranking score was calculated fromanipTM aggregate (Supplemen-
tary Methods 5.9.3 (point 3)), then further divided by 100 if the ligand
had chirality errors or had clashes with the protein.

For pocket-aligned r.m.s.d., first alignment between the pre-
dicted and ground-truth structures was conducted by aligning to the
ground-truth pocket backbone atoms (CA, C or N atoms within 10 A
of the ligand of interest) from the primary protein chain (the chain
with the greatest number of contacts within 10 A of the ligand). The
PoseBusters Python package v.0.2.7' was used to score r.m.s.d. and
violations from the pocket-aligned predictions.

While AlphaFold models are ‘blind’ to the protein pocket, docking is
often performed with knowledge of the protein pocket residues. For
example, Uni-Mol specifies the pocket as any residue within 6 A of the
heavy atoms in theligand of interest?®. To evaluate the ability of AF3 to
dockligands accurately when given pocket information, we fine-tuned
a30 September 2019 cut-off AF3 model with an additional token feature
specifying pocket-ligand pairs (Supplementary Methods 2.8). Specifi-
cally,anadditional token feature wasintroduced, set to true for aligand
entity of interest and any pocket residues with heavy atoms within 6 A
of the ligand entity. At training time, a single random ligand entity is
chosentouseinthis feature. Note that multiple ligand chains with the
same entity (CCD code) may be selected. Atinference time, the ligand
entity was chosenbased on the ligand of interest’s CCD code, so again
multiple ligand chains were occasionally chosen. The results of this
analysis are shown in Extended Data Fig. 4.

Model performance analysis and visualization

Data analysis used Pythonv.3.11.7 (https://www.python.org/), NumPy
v.1.26.3 (https://github.com/numpy/numpy), SciPy v.1.9.3 (https:/www.
scipy.org/),seabornv.0.12.2 (https://github.com/mwaskom/seaborn),

Matplotlib v.3.6.1 (https://github.com/matplotlib/matplotlib), pan-
das v.2.0.3 (https://github.com/pandas-dev/pandas), statsmodels
v.0.12.2 (https://github.com/statsmodels/statsmodels), RDKit v.4.3.0
(https://github.com/rdkit/rdkit) and Colab (https://research.google.
com/colaboratory). TM-align v.20190822 (https://zhanglab.dcmb.
med.umich.edu/TM-align/) was used for computing TM-scores. Struc-
ture visualizations were created in Pymol v.2.55.5 (https://github.com/
schrodinger/pymol-open-source).

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allscientific datasets used to create training and evaluationinputs are
freely available from public sources. Structures fromthe PDB were used
for training and as templates (https://files.wwpdb.org/pub/pdb/data/
assemblies/mmCIF/; sequence clusters are available at https://cdn.rcsb.
org/resources/sequence/clusters/clusters-by-entity-40.txt; sequence
dataareavailable at https://files.wwpdb.org/pub/pdb/derived_data/).
Training used a version of the PDB downloaded 12 January 2023, while
template search used a version downloaded 28 September 2022. We
also used the Chemical Components Dictionary downloaded on 19
October 2023 (https://www.wwpdb.org/data/ccd). We show experi-
mental structures from the PDB under accession numbers 7PZB
(ref.52), 7PNM (ref. 53), 7TQL (ref. 54), 7AU2 (ref. 55), 7U8C (ref. 56),
7URD (ref. 57), 7WUX (ref. 58), 7QIE (ref. 59), 7T82 (ref. 60), 7CTM
(ref.61), 8CVP (ref. 42), 8D7U (ref.42), 7F60 (ref. 62), 8BTI (ref. 63), 7KZ9
(ref. 64), 7XFA (ref. 65), 7PEU (ref. 66), 7SDW (ref. 67), 7TNZ (ref. 68),
7R6R (ref. 69), 7USR (ref. 70) and 7Z1K (ref. 71). We also used the fol-
lowing publicly available databases for training or evaluation. Detailed
usageisdescribed in Supplementary Methods 2.2 and2.5.2. UniRef90
v.2020_01 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_
releases/release-2020_01/uniref/), UniRef90 v.2020_03 (https://ftp.
ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2020_03/
uniref/), UniRef90 v.2022_05 (https://ftp.ebi.ac.uk/pub/databases/
uniprot/previous_releases/release-2022_05/uniref/), Uniclust30
v.2018_08 (https://wwwuser.gwdg.de/-compbiol/uniclust/2018_08/),
Uniclust30 v.2021_03 (https://wwwuser.gwdg.de/~compbiol/uni-
clust/2021_03/), MGnify clusters v.2018 12 (https://ftp.ebi.ac.uk/pub/
databases/metagenomics/peptide_database/2018_12/), MGnify clus-
ters v.2022_05 (https://ftp.ebi.ac.uk/pub/databases/metagenomics/
peptide_database/2022_05/), BFD (https://bfd.mmseqgs.com), RFam
v.14.9 (https://ftp.ebi.ac.uk/pub/databases/Rfam/14.9/), RNAcentral
v.21.0 (https://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/21.0/),
Nucleotide Database (as of 23 February 2023) (https://ftp.ncbi.nlm.
nih.gov/blast/db/FASTA/nt.gz), JASPAR 2022 (https://jaspar.elixir.
no/downloads/; see https://jaspar.elixir.no/profile-versions for
versioninformation), SELEX protein sequences from the supplemen-
tary tables of ref. 72 and SELEX protein sequences from the supple-
mentary tables of ref. 73.

Code availability

AlphaFold 3 will be available as anon-commercial usage only server at
https://www.alphafoldserver.com, with restrictions on allowed ligands
and covalent modifications. Pseudocode describing the algorithms
is available in the Supplementary Information. Code is not provided.
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Extended DataFig.1|Disordered region prediction. a, Example prediction
foradisordered protein from AlphaFoldMultimer v2.3, AlphaFold 3, and
AlphaFold 3 trained without the disordered protein PDB cross distillation set.
Proteinis DP02376 from the CAID 2 (Critical Assessment of protein Intrinsic
Disorder prediction) set. Predictions coloured by pLDDT (orange: pLDDT <=50,

yellow: 50 <pLDDT <=70, light blue: 70 <pLDDT <=90, and dark blue: 90 <=
pLDDT <100).b, Predictions of disorder across residuesin proteinsin the CAID
2set, which arealsolow homology to the AF3 training set. Prediction methods
include RASA (relative accessible surface area) and pLDDT (N =151 proteins;
46,093 residues).
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Extended DataFig. 2| Accuracy across training. Training curves for initial
training and fine tuning showing LDDT (local distance difference test) on our
evaluationsetas afunction of optimizer steps. One optimizer step usesa
minibatch of 256 trunk samples and duringinitial training 256 *48=12,288
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t0256*32=8,192. Thescatter plot shows the raw data points and the lines show
the smoothed performance using amedian filter with akernel width of 9 data
points. The dashed lines mark the points where the smoothed performance
passes 90% and 97% of the initial training maximum for the first time.
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a

Extended DataFig. 3| AlphaFold 3 predictions of PoseBusters examples b, Pseudomonas sp. PDC86 Aapfbound to HEHEAA (PDBID 7KZ9, ligand
for which Vinaand Gold were inaccurate. Predicted protein chains are RMSD:1.3A). ¢, Human Galectin-3 carbohydrate-recognition domainin
showninblue, predictedligandsinorange, and ground truthingrey.a, Human complex withcompound 22 (PDBID 7XFA, ligand RMSD: 0.44 A).

Notum bound to inhibitor ARUK3004556 (PDB ID 8BTI, ligand RMSD: 0.65 A).
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Extended DataFig. 4 |PoseBusters analysis.a, Comparison of AlphaFold 3
and baseline method protein-ligand binding success on the PoseBusters
Version1benchmarkset (V1, August 2023 release). Methods classified by the
extentof ground truth information used to make predictions. Note allmethods
thatuse pocket residue information except for UMol and AF3 also use ground
truth holo proteinstructures. b, PoseBusters Version 2 (V2, November 2023
release) comparison between the leading docking method Vinaand AF32019
(two-sided Fisher exacttest, N=308 targets, p=2.3*107%). ¢, PoseBusters V2
results of AF32019 on targets with low, moderate, and high protein sequence
homology (integer rangesindicate maximum sequence identity with proteins
inthetrainingset). d, PoseBusters V2 results of AF3 2019 with ligands split by

those characterized as “common natural” ligands and others. “Common
natural” ligands are defined as those which occur greater than100 times in the
PDB and which are not non-natural (by visual inspection). A full list may be
foundin Supplementary Table15. Dark bar indicates RMSD <2 A and passing
PoseBusters validity checks (PB-valid). e, PoseBusters V2 structural accuracy
and validity. Dark bar indicates RMSD <2 A and passing PoseBusters validity
checks (PB-valid). Light hashed barindicates RMSD < 2 Abutnot PBvalid.
f,PoseBusters V2 detailed validity check comparison. Error barsindicate exact
binomial distribution 95% confidence intervals.N=427 targets for RoseTTAFold
All-Atom and 428 targets for all others in Version1; 308 targets in Version 2.
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Extended DataFig. 5|Nucleicacid predictionaccuracy and confidences.
a, CASP15RNA predictionaccuracy from AIChemy_RNA (the top Al-based
submission), RoseTTAFold2NA (the Al-based method capable of predicting
proteinRNA complexes), and AlphaFold 3. Ten of the 13 targets are availablein
the PDB or viathe CASP15 website for evaluation. Predictions are downloaded
from the CASP website for external models. b, Accuracy on structures
containing low homology RNA-only or DNA-only complexes from the recent
PDB evaluation set. Comparison between AlphaFold 3 and RoseTTAFold2NA
(RF2NA) (RNA:N =29 structures, paired Wilcoxon signed-rank test,
p=1.6*107;DNA:N =63 structures, paired two-sided Wilcoxon signed-rank
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test, p=5.2*10"2).Note RF2NA was only trained and evaluated on duplexes
(chains forming atleast 10 hydrogen bonds), but some DNA structuresin this
set may not be duplexes. Box, centerline, and whiskers boundaries are at
(25%,75%) intervals, median, and (5%, 95%) intervals. ¢ Predicted structure of
amycobacteriophage immunity repressor protein bound to double stranded
DNA (PDBID 7R6R), coloured by pLDDT (left; orange: 0-50, yellow:50-70, cyan
70-90, and blue 90-100) and chain id (right). Note the disordered N-terminus
notentirely shown.d, Predicted aligned error (PAE) per token-pair for the
predictionincwithrowsand columnslabelled by chainid and green gradient
indicating PAE.
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Extended DataFig. 6 | Analysis and examples for modified proteinsand
nucleicacids. a, Accuracy onstructures. containing common phosphorylation
residues (SEP, TPO, PTR, NEP, HIP) from the recent PDB evaluation set.
Comparisonbetween AlphaFold 3 with phosphorylation modelled, and
AlphaFold 3 without modelling phosphorylation (N=76 clusters, paired
two-sided Wilcoxonsigned-rank test, p=1.6*10"*). Note, to predict astructure
without modelling phosphorylation, we predict the parent (standard) residue
inplace ofthe modification. AlphaFold 3 generally achieves better backbone
accuracy whenmodelling phosphorylation. Error barsindicate exact binomial
distribution 95% confidenceintervals.b, SPOC domain of human SHARPin
complex with phosphorylated RNA polymerase Il C-terminal domain (PDBID
7Z1K), predictions coloured by pLDDT (orange: 0-50, yellow: 50-70, cyan
70-90, and blue 90-100). Left: Phosphorylation modelled (mean pocket-
aligned RMSD(, 2.104 A). Right: Without modelling phosphorylation (mean

pocketaligned RMSD,10.261A). When excluding phosphorylation, AlphaFold
3provides lower pLDDT confidence on the phosphopeptide. ¢, Structure of
parkinbound to two phospho-ubiquitin molecules (PDB ID 7US1), predictions
similarly coloured by pLDDT. Left: Phosphorylation modelled (mean pocket-
aligned RMSD, 0.424 A). Right: Without modelling phosphorylation (mean
pocket-aligned RMSD,, 9.706 A). When excluding phosphorylation, AlphaFold
3 provideslower pLDDT confidence ontheinterface residues oftheincorrectly
predicted ubiquitin.d, Example structures with modified nucleic acids. Left:
Guanosine monophosphatein RNA (PDBID 7TNZ, mean pocket-aligned modified
residue RMSD 0.840 A). Right: Methylated DNA cytosines (PDB ID 7SDW, mean
pocket-aligned modified residue RMSD 0.502 A). Welabel residues of the
predicted structure for reference. Ground truth structure ingrey; predicted
proteininblue, predicted RNAin purple, predicted DNA in magenta, predicted
ionsinorange, with predicted modifications highlighted viaspheres.


https://doi.org/10.2210/pdb7Z1K/pdb
https://doi.org/10.2210/pdb7US1/pdb
https://doi.org/10.2210/pdb7TNZ/pdb
https://doi.org/10.2210/pdb7SDW/pdb

Article

a
'_
)
)
-
404
204
AlphaFold 3
—— AlphaFold-Multimer 2.3
0 T T T T T
10° 10! 102 103 104
Median per-residue N for the chain
b 100
protein-intra
dna-intra
protein-protein (antibody=False)
80 A rna-intra
=== protein-dna
— = protein-ligand
E 60 4 - protein-protein (antibody=True)
O protein-rna
=
= —
[
o
Q 40 -/7
20 4
O T T T T T 1

5 10 15 20
seeds per target

Extended DataFig.7|Model accuracy with MSA size and number of seeds.
a, Effect of MSA depth on protein prediction accuracy. Accuracy is given as
single chain LDDT score and MSA depthis computed by counting the number
of non-gap residues for each position in the MSA using the N, weighting

scheme and taking the median across residues (see Methods for details on N).

MSA used for AF-M 2.3 differs slightly from AF3; the datauses the AF3 MSA
depthforboth to make the comparison clearer. The analysis uses every protein
chaininthelow homology Recent PDB set, restricted to chains in complexes
with fewer than 20 protein chains and fewer than 2,560 tokens (see Methods
for details on Recent PDB set and comparisons to AF-M 2.3). The curves are

25 30

obtained through Gaussian kernel average smoothing (window size is 0.2 units
inloglO(N,z)); the shaded areais the 95% confidence interval estimated using
bootstrap of10,000 samples. b, Increase in ranked accuracy with number of
seeds for different molecule types. Predictions are ranked by confidence,
and only the most confident perinterfaceis scored. Evaluated on the low
homology recent PDB set, filtered to less than 1,536 tokens. Number of clusters
evaluated: dna-intra=386, protein-intra=_875, rnaintra=78, protein-dna=307,
protein-rna=102, protein-protein (antibody = False) = 697, protein-protein
(antibody =True) =58. Confidenceintervals are 95%bootstraps over1,000
samples.



lon-Protein Bonded Ligand-Protein Bonded Glycan-Protein

100 — — 100 — — 100 — - .
280 280 280
3 3 3
£ £ £ RMSD threshold (A)
v 60 v 60 v 60 . 50-
a a a 2.0-5.0
[} [} [}
- - z 1.0-2.0
£ 40 7 £ 40 7 £ 40 7 0.5-1.0
° ° °
% % % . 0-0.5
o o o
220 220 220
X X xR
0 - 0 I I I 0 -
0-0.4 0.4-0.6 0.6-0.8 0.8-0.95 0.95+ 0-0.4 0.4-0.6 0.6-0.8 0.8-0.95 0.95+ 0-0.4 0.4-0.6 0.6-0.8 0.8-0.95 0.95+
N=34 N=48 N=175 N=332 N=377 N=0 N=0 N=2 N=30 N=49 N=0 N=1 N=1 N=16 N=12
chain pair ipTM chain pair ipTM chain pair ipTM
Extended DataFig. 8| Relationship between confidence and accuracy Theionsgroupincludes both metals and nonmetals. N values report the
for proteininteractions withions, bondedligands and bonded glycans. number of clustersineach band. For asimilar analysis on general ligand-protein

Accuracyisgivenasthe percentage of interface clusters under various pocket- interfaces, see Fig. 4 of main text.
aligned RMSD thresholds, as a function of the chain pairipTM of the interface.



Article

100 =
correct -
X 7
very high accuracy g
’
’
’
’
80 - e
e
/”
/"
,/
60 .7
,/
= P
[a)
[a) S
pr} e
= 7
,/
40 = e
’
.
.
-’
P
’/’
20 - 4%
&
7’
,/
o
2
0 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
DockQ

Extended DataFig.9|Correlation of DockQandiLDDT for protein-proteininterfaces. One data point per cluster, 4,182 clusters shown. Line of best fit with a
Huberregressor withepsilon1. DockQ categories correct (>0.23), and very high accuracy (>0.8) correspond toiLDDTs 0f23.6 and 77.6 respectively.



Extended Data Table 1| Prediction accuracy across biomolecular complexes

Task Dataset Metric Notes Method N Mean 95% CI

Ligands PoseBusters V1 % RMSD < 2 A - RoseTTAFold All-Atom 427 42.0 37.2-4638
AF3 (2019 cutoff) 428 76.4 72.1-80.3

Holo protein struct. given EquiBind 428 2.6 1.3-46

TankBind 428 15.0 1.7 -18.7
DiffDock 428 37.9 33.2-426
Pocket residues specified Vina on AF-M 2.3 428 13.1 10.0 - 16.7
DeepDock 428 17.8 14.3-21.7
Uni-Mol 428 229 19.0-27.2
UMol 428 45.0 40.3 - 49.9
Gold 428 512 46.3-156.0
Vina 428 52.3 47.5-57.2
Uni-Mol Docking V2 428 77.6 73.3-814
AF3 (2019 cutoff) pocket specified 428 90.2 87.0-928
PoseBusters V2 % RMSD < 2 A - AF3 (2019 cutoff) 308 80.5 75.6-848

Holo protein struct. given EquiBind 308 19 0.7-42
TankBind 308 15.9 12.0 - 20.5
DiffDock 308 38.0 32.5-437
Pocket residues specified Vina on AF-M 2.3 308 153 11.4-19.8
DeepDock 308 19.5 15.2-24.4
Uni-Mol 308 218 17.3-26.8
Gold 308 581 52.4-637
Vina 308 59.7 54.0 - 65.3
AF3 (2019 cutoff) pocket specified 308 93.2 89.8-957
Nucleic Acids Protein-RNA iLDDT RoseTTAFold2NA 25 19.0 15.6 — 23.2
AF3 25 39.4 28.5-519
Protein-dsDNA iLDDT RoseTTAFold2NA 38 28.3 20.7-37.5
AF3 38 64.8 56.4 -71.7
CASP 15 RNA RNA LDDT RoseTTAFold2NA 8 355 28.3-43.8
AF3 8 47.3 417 - 55.2
Alchemy_RNA2 (has human input) 8 545 453-624
RNApolis (has human input) 8 50.5 452-5538
Chen (has human input) 8 49.8  40.7-58.5
Kiharalab 8 40.9 35.1-543
UltraFold 8 37.8 32.5-45.0
Covalent Mod.  Bonded ligands % RMSD < 2 A AF3 66 785 68.3-86.2
Glycosylation % RMSD < 2A high-quality, single-residue ~ AF3 28 721  531-857
all-quality, single-residue AF3 167 46.0 40.0 - 521
all-quality, multi-residue AF3 131 42.4 354-493
Modified residues % RMSD < 2 A AF3 154 59.9 524-67.0
Modified protein residues % RMSD < 2 A AF3 40 51.0 36.0-65.6
Modified DNA residues %RMSD < 2A AF3 91 686 59.0-76.9
Modified RNA residues % RMSD < 2 A AF3 23 409 23.4-59.9
Proteins All Protein-Protein % dockq > 0.23 AF-M 2.3 1064 67.5 647-70.1
AF3 1064 76.6 74.0 -78.9
Protein-Antibody % dockq > 0.23 AF-M 2.3 65 296  19.6-404
AF3 65 62.9 51.4 -73.5
Monomers LDDT AF-M 2.3 338 85.5 84.7 - 86.1
AF3 338 86.9 86.2 - 87.6

AlphaFold 3 Performance on PoseBusters V1 (August 2023 release), PoseBusters V2 (November 6th 2023 release), and our Recent PDB evaluation set. For ligands and nucleic acids N indicates
number of structures; for covalent modifications and proteins N indicates number of clusters.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

/a | Confirmed

>

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All scientific datasets used to create training and evaluation inputs are freely available from public sources (see Data section below). No
additional data was collected.

Data analysis Data analysis used Python v3.11.7 (https://www.python.org/), NumPy v1.26.3 (https://github.com/numpy/numpy), SciPy v1.9.3 (https://
www.scipy.org/), seaborn v0.12.2 (https://github.com/mwaskom/seaborn), Matplotlib v3.6.1 (https://github.com/matplotlib/matplotlib),
pandas v2.0.3 (https://github.com/pandas-dev/pandas), statsmodels v0.12.2 (https://github.com/statsmodels/statsmodels), RDKit v4.3.0
(https://github.com/rdkit/rdkit), and Colab (https://research.google.com/colaboratory). TM-align v20190822 (https://
zhanglab.dcmb.med.umich.edu/TM-align/) was used for computing TM-scores. Structure visualizations were created in Pymol v2.55.5
(https://github.com/schrodinger/pymol-open-source). PoseBusters scoring done with PoseBusters v0.2.7 (https://github.com/maabuu/
posebusters). RoseTTAFold2NA benchmarking done with RoseTTAFold2NA v0.2 (https://github.com/uw-ipd/RoseTTAFold2NA).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All scientific datasets used to create training and evaluation inputs are freely available from public sources. Structures from the PDB were used for training and as
templates (https://files.wwpdb.org/pub/pdb/data/assemblies/mmCIF/; for sequence clusters see https://cdn.rcsh.org/resources/sequence/clusters/clusters-by-
entity-40.txt; for sequence data see https://files.wwpdb.org/pub/pdb/derived_data/).

Training used a version of the PDB downloaded 12 January 2023, while template search used a version downloaded 28 September 2022. We also used the Chemical
Components Dictionary downloaded on 19 October 2023 (https://www.wwpdb.org/data/ccd).

We show experimental structures from the PDB with accession numbers 7PZB50,51, 7PNM52,53, 7TQL54,55, 7AU256,57, 7U8C58,59, 7URD60,61, 7WUX62,63,
7QIE64,65, 7T8266,67, 7CTM68,69, 8CVP43,70, 8D7U43,71, 7F6072,73, 8BTI74,75, 7KZ976,77, 7XFA78,79, 7PEUS0,81, 7SDW82,83, 7TNZ84,85, 7R6R 86,87,
7USR88,89, and 721K.90,91

We also used the following publicly available databases for training or evaluation. Detailed usage is described in Supplementary Methods 2.2{Genetic search}and
Supplementary Methods 2.5.2{Distillation datasets}.

UniRef90v.2020_01 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2020_01/uniref/),
UniRef90v.2020_03 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2020_03/uniref/),
UniRef90v.2022_05

https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2022_05/uniref/),
Uniclust30v.2018_08

(https://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/),

Uniclust30v.2021_03

(https://wwwuser.gwdg.de/~compbiol/uniclust/2021_03/),

MGnify clusters v.2018_12

(https://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2018_12/),

MGnify clusters v.2022_05

(https://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2022_05/),

BFD

(https://bfd.mmsegs.com),

RFamv.14.9

(https://ftp.ebi.ac.uk/pub/databases/Rfam/14.9/),

RNAcentral v.21.0

(https://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/21.0/),

Nucleotide Database (as of 23 February 2023)

(https://ftp.ncbi.nim.nih.gov/blast/db/FASTA/nt.gz),

JASPAR 2022

(https://jaspar.elixir.no/downloads/; see https://jaspar.elixir.no/profile-versions for version information),

SELEX protein sequences from Supplementary Tables92
(https://www.ncbi.nIm.nih.gov/pmc/articles/PMC8009048/),

SELEX protein sequences from Supplementary Tables93

(https://www.nature.com/articles/nature15518).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or  N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All available data were used for each benchmark. No subsampling was performed.

Data exclusions | PDB structures were excluded on the basis of size or homology as described in the text
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Replication Code and method details were carefully checked for completeness and replicability.
Randomization  The work constitutes in-silico analysis so all treatments (software packages) were applied to all relevant data for benchmarking.

Blinding Test sets were held back from training but researchers were not blinded. Large test sizes (all recent PDB) were used instead to avoid
overfitting. Fully blind tests would be impractical over the development of the project due to the small size of recent PDB and the need for
large samples size on individual new prediction modalities.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
XI|[] Antibodies XI|[] chip-seq
|Z |:| Eukaryotic cell lines |Z |:| Flow cytometry
X |:| Palaeontology and archaeology |:| MRI-based neuroimaging
X |:| Animals and other organisms
XI|[ ] Clinical data
|:| Dual use research of concern
XI|[] Plants
Plants
Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication ngcirlﬁ)lé/,g;;y atithentication-procedures foreach seed stock-tised-or-novel-genotype generated.—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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