
Nature  |  Vol 630  |  13 June 2024  |  493

Article

Accurate structure prediction of 
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The introduction of AlphaFold 21 has spurred a revolution in modelling the structure 
of proteins and their interactions, enabling a huge range of applications in protein 
modelling and design2–6. Here we describe our AlphaFold 3 model with a substantially 
updated diffusion-based architecture that is capable of predicting the joint structure 
of complexes including proteins, nucleic acids, small molecules, ions and modified 
residues. The new AlphaFold model demonstrates substantially improved accuracy 
over many previous specialized tools: far greater accuracy for protein–ligand 
interactions compared with state-of-the-art docking tools, much higher accuracy  
for protein–nucleic acid interactions compared with nucleic-acid-specific predictors 
and substantially higher antibody–antigen prediction accuracy compared with 
AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy 
modelling across biomolecular space is possible within a single unified deep-learning 
framework.

Accurate models of biological complexes are critical to our under-
standing of cellular functions and for the rational design of thera
peutics2–4,9. Enormous progress has been achieved in protein structure 
prediction with the development of AlphaFold1, and the field has 
grown tremendously with a number of later methods that build on 
the ideas and techniques of AlphaFold 2 (AF2)10–12. Almost immediately 
after AlphaFold became available, it was shown that simple input 
modifications would enable surprisingly accurate protein interaction 
predictions13–15 and that training AF2 specifically for protein inter
action prediction yielded a highly accurate system7.

These successes lead to the question of whether it is possible to 
accurately predict the structure of complexes containing a much wider 
range of biomolecules, including ligands, ions, nucleic acids and modi-
fied residues, within a deep-learning framework. A wide range of pre-
dictors for various specific interaction types has been developed16–28, 
as well as one generalist method developed concurrently with the 
present work29, but the accuracy of such deep-learning attempts has 
been mixed and often below that of physics-inspired methods30,31. 
Almost all of these methods are also highly specialized to particular 
interaction types and cannot predict the structure of general biomo-
lecular complexes containing many types of entities.

Here we present AlphaFold 3 (AF3)—a model that is capable of 
high-accuracy prediction of complexes containing nearly all molecular 
types present in the Protein Data Bank32 (PDB) (Fig. 1a,b). In all but one 
category, it achieves a substantially higher performance than strong 
methods that specialize in just the given task (Fig. 1c and Extended 
Data Table 1), including higher accuracy at protein structure and the 
structure of protein–protein interactions.

This is achieved by a substantial evolution of the AF2 architec-
ture and training procedure (Fig. 1d) both to accommodate more 
general chemical structures and to improve the data efficiency of 
learning. The system reduces the amount of multiple-sequence 
alignment (MSA) processing by replacing the AF2 evoformer with 
the simpler pairformer module (Fig. 2a). Furthermore it directly 
predicts the raw atom coordinates with a diffusion module, replac-
ing the AF2 structure module that operated on amino-acid-specific 
frames and side-chain torsion angles (Fig.  2b). The multiscale 
nature of the diffusion process (low noise levels induce the net-
work to improve local structure) also enable us to eliminate 
stereochemical losses and most special handling of bonding pat-
terns in the network, easily accommodating arbitrary chemical  
components.
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Network architecture and training
The overall structure of AF3 (Fig. 1d and Supplementary Methods 3) 
echoes that of AF2, with a large trunk evolving a pairwise representa-
tion of the chemical complex followed by a structure module that uses 
the pairwise representation to generate explicit atomic positions, but 
there are large differences in each major component. These modifica-
tions were driven both by the need to accommodate a wide range of 
chemical entities without excessive special casing and by observations 
of AF2 performance with different modifications. Within the trunk, 
MSA processing is substantially de-emphasized, with a much smaller 
and simpler MSA embedding block (Supplementary Methods 3.3). 

Compared with the original evoformer from AF2, the number of blocks 
is reduced to four, the processing of the MSA representation uses an 
inexpensive pair-weighted averaging and only the pair representa-
tion is used for later processing steps. The ‘pairformer’ (Fig. 2a and 
Supplementary Methods 3.6) replaces the evoformer of AF2 as the 
dominant processing block. It operates only on the pair representation 
and the single representation; the MSA representation is not retained 
and all information passes through the pair representation. The pair 
processing and the number of blocks (48) is largely unchanged from 
AF2. The resulting pair and single representation together with the 
input representation are passed to the new diffusion module (Fig. 2b) 
that replaces the structure module of AF2.
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Fig. 1 | AF3 accurately predicts structures across biomolecular complexes. 
a,b, Example structures predicted using AF3. a, Bacterial CRP/FNR family 
transcriptional regulator protein bound to DNA and cGMP (PDB 7PZB; 
full-complex LDDT47, 82.8; global distance test (GDT)48, 90.1). b, Human 
coronavirus OC43 spike protein, 4,665 residues, heavily glycosylated and 
bound by neutralizing antibodies (PDB 7PNM; full-complex LDDT, 83.0; GDT, 
83.1). c, AF3 performance on PoseBusters (v.1, August 2023 release), our recent 
PDB evaluation set and CASP15 RNA. Metrics are as follows: percentage of 
pocket-aligned ligand r.m.s.d. < 2 Å for ligands and covalent modifications; 
interface LDDT for protein–nucleic acid complexes; LDDT for nucleic acid and 
protein monomers; and percentage DockQ > 0.23 for protein–protein and 
protein–antibody interfaces. All scores are reported from the top confidence- 
ranked sample out of five model seeds (each with five diffusion samples), 
except for protein–antibody scores, which were ranked across 1,000 model 
seeds for both models (each AF3 seed with five diffusion samples). Sampling 

and ranking details are provided in the Methods. For ligands, n indicates the 
number of targets; for nucleic acids, n indicates the number of structures; for 
modifications, n indicates the number of clusters; and for proteins, n indicates 
the number of clusters. The bar height indicates the mean; error bars indicate 
exact binomial distribution 95% confidence intervals for PoseBusters and by 
10,000 bootstrap resamples for all others. Significance levels were calculated 
using two-sided Fisher’s exact tests for PoseBusters and using two-sided 
Wilcoxon signed-rank tests for all others; ***P < 0.001, **P < 0.01. Exact P values 
(from left to right) are as follows: 2.27 × 10−13, 2.57 × 10−3, 2.78 × 10−3, 7.28 × 10−12, 
1.81 × 10−18, 6.54 × 10−5 and 1.74 × 10−34. AF-M 2.3, AlphaFold-Multimer v.2.3; 
dsDNA, double-stranded DNA. d, AF3 architecture for inference. The rectangles 
represent processing modules and the arrows show the data flow. Yellow, input 
data; blue, abstract network activations; green, output data. The coloured balls 
represent physical atom coordinates.

https://doi.org/10.2210/pdb7PZB/pdb
https://doi.org/10.2210/pdb7PNM/pdb
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The diffusion module (Fig. 2b and Supplementary Methods 3.7) oper-
ates directly on raw atom coordinates, and on a coarse abstract token 
representation, without rotational frames or any equivariant process-
ing. We had observed in AF2 that removing most of the complexity 
of the structure module had only a modest effect on the prediction 
accuracy, and maintaining the backbone frame and side-chain torsion 
representation add quite a bit of complexity for general molecular 
graphs. Similarly AF2 required carefully tuned stereochemical viola-
tion penalties during training to enforce chemical plausibility of the 
resulting structures. We use a relatively standard diffusion approach33 
in which the diffusion model is trained to receive ‘noised’ atomic coor-
dinates and then predict the true coordinates. This task requires the 

network to learn protein structure at a variety of length scales, whereby 
the denoising task at small noise emphasizes understanding very local 
stereochemistry and the denoising task at high noise emphasizes the 
large-scale structure of the system. At the inference time, random noise 
is sampled and then recurrently denoised to produce a final structure. 
Importantly, this is a generative training procedure that produces a 
distribution of answers. This means that, for each answer, the local 
structure will be sharply defined (for example, side-chain bond geom-
etry) even when the network is uncertain about the positions. For this 
reason, we are able to avoid both torsion-based parametrizations of 
the residues and violation losses on the structure, while handling the 
full complexity of general ligands. Similarly to some recent work34,  
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Fig. 2 | Architectural and training details. a, The pairformer module.  
Input and output: pair representation with dimension (n, n, c) and single 
representation with dimension (n, c). n is the number of tokens (polymer 
residues and atoms); c is the number of channels (128 for the pair representation, 
384 for the single representation). Each of the 48 blocks has an independent set 
of trainable parameters. b, The diffusion module. Input: coarse arrays depict 
per-token representations (green, inputs; blue, pair; red, single). Fine arrays 
depict per-atom representations. The coloured balls represent physical atom 
coordinates. Cond., conditioning; rand. rot. trans., random rotation and 
translation; seq., sequence. c, The training set-up (distogram head omitted) 

starting from the end of the network trunk. The coloured arrays show activations 
from the network trunk (green, inputs; blue, pair; red, single). The blue arrows 
show abstract activation arrays. The yellow arrows show ground-truth data. 
The green arrows show predicted data. The stop sign represents stopping of 
the gradient. Both depicted diffusion modules share weights. d, Training 
curves for initial training and fine-tuning stages, showing the LDDT on our 
evaluation set as a function of optimizer steps. The scatter plot shows the raw 
datapoints and the lines show the smoothed performance using a median filter 
with a kernel width of nine datapoints. The crosses mark the point at which the 
smoothed performance reaches 97% of its initial training maximum.
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we find that no invariance or equivariance with respect to global 
rotations and translation of the molecule are required in the archi-
tecture and we therefore omit them to simplify the machine learning  
architecture.

The use of a generative diffusion approach comes with some technical 
challenges that we needed to address. The biggest issue is that genera-
tive models are prone to hallucination35, whereby the model may invent 
plausible-looking structure even in unstructured regions. To counteract 
this effect, we use a cross-distillation method in which we enrich the 
training data with structures predicted by AlphaFold-Multimer (v.2.3)7,8. 
In these structures, unstructured regions are typically represented 
by long extended loops instead of compact structures, and training 
on them ‘teaches’ AF3 to mimic this behaviour. This cross-distillation 
greatly reduced the hallucination behaviour of AF3 (Extended Data 
Fig. 1 for disorder prediction results on the CAID 236 benchmark set).

We also developed confidence measures that predict the atom-level 
and pairwise errors in our final structures. In AF2, this was done directly 
by regressing the error in the output of the structure module during 
training. However, this procedure is not applicable to diffusion training, 
as only a single step of the diffusion is trained instead of a full-structure 
generation (Fig. 2c). To remedy this, we developed a diffusion ‘rollout’ 
procedure for the full-structure prediction generation during training 
(using a larger step size than normal; Fig. 2c (mini-rollout)). This pre-
dicted structure is then used to permute the symmetric ground-truth 
chains and ligands, and to compute the performance metrics to train 
the confidence head. The confidence head uses the pairwise representa-
tion to predict a modified local distance difference test (pLDDT) and a 
predicted aligned error (PAE) matrix as in AF2, as well as a distance error 
matrix (PDE), which is the error in the distance matrix of the predicted 
structure as compared to the true structure (details are provided in 
Supplementary Methods 4.3).

Figure 2d shows that, during initial training, the model learns quickly 
to predict the local structures (all intrachain metrics go up quickly and 
reach 97% of the maximum performance within the first 20,000 training 
steps), while the model needs considerably longer to learn the global 
constellation (the interface metrics go up slowly and protein–protein 
interface LDDT passes the 97% bar only after 60,000 steps). During 
AF3 development, we observed that some model abilities topped out 

relatively early and started to decline (most likely due to overfitting to 
the limited number of training samples for this capability), while other 
abilities were still undertrained. We addressed this by increasing or 
decreasing the sampling probability for the corresponding training 
sets (Supplementary Methods 2.5.1) and by performing early stopping 
using a weighted average of all of the above metrics and some additional 
metrics to select the best model checkpoint (Supplementary Table 7). 
The fine-tuning stages with the larger crop sizes improve the model on 
all metrics with an especially high uplift on protein–protein interfaces 
(Extended Data Fig. 2).

Accuracy across complex types
AF3 can predict structures from input polymer sequences, residue 
modifications and ligand SMILES (simplified molecular-input line-entry 
system). In Fig. 3 we show a selection of examples highlighting the abil-
ity of the model to generalize to a number of biologically important 
and therapeutically relevant modalities. In selecting these examples, 
we considered novelty in terms of the similarity of individual chains 
and interfaces to the training set (additional information is provided 
in Supplementary Methods 8.1).

We evaluated the performance of the system on recent interface- 
specific benchmarks for each complex type (Fig. 1c and Extended 
Data Table 1). Performance on protein–ligand interfaces was evalu-
ated on the PoseBusters benchmark set, which is composed of 428 
protein–ligand structures released to the PDB in 2021 or later. As our 
standard training cut-off date is in 2021, we trained a separate AF3 
model with an earlier training-set cutoff (Methods). Accuracy on the 
PoseBusters set is reported as the percentage of protein–ligand pairs 
with pocket-aligned ligand root mean squared deviation (r.m.s.d.) of 
less than 2 Å. The baseline models come in two categories: those that 
use only protein sequence and ligand SMILES as an input and those that 
additionally leak information from the solved protein–ligand test struc-
ture. Traditional docking methods use the latter privileged information, 
even though that information would not be available in real-world use 
cases. Even so, AF3 greatly outperforms classical docking tools such as 
Vina37,38 even while not using any structural inputs (Fisher’s exact test, 
P = 2.27 × 10−13) and greatly outperforms all other true blind docking 
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Fig. 3 | Examples of predicted complexes. Selected structure predictions 
from AF3. Predicted protein chains are shown in blue (predicted antibody in 
green), predicted ligands and glycans in orange, predicted RNA in purple and 
the ground truth is shown in grey. a, Human 40S small ribosomal subunit (7,663 
residues) including 18S ribosomal RNA and Met-tRNAi

Met (opaque purple) in a 
complex with translation initiation factors eIF1A and eIF5B (opaque blue; PDB 
7TQL; full-complex LDDT, 87.7; GDT, 86.9). b, The glycosylated globular portion 

of an EXTL3 homodimer (PDB 7AU2; mean pocket-aligned r.m.s.d., 1.10 Å).  
c, Mesothelin C-terminal peptide bound to the monoclonal antibody 15B6  
(PDB 7U8C; DockQ, 0.85). d, LGK974, a clinical-stage inhibitor, bound to 
PORCN in a complex with the WNT3A peptide (PDB 7URD; ligand r.m.s.d., 
1.00 Å). e, (5S,6S)-O7-sulfo DADH bound to the AziU3/U2 complex with a novel 
fold (PDB 7WUX; ligand r.m.s.d., 1.92 Å). f, Analogue of NIH-12848 bound to an 
allosteric site of PI5P4Kγ (PDB 7QIE; ligand r.m.s.d., 0.37 Å).

https://doi.org/10.2210/pdb7TQL/pdb
https://doi.org/10.2210/pdb7AU2/pdb
https://doi.org/10.2210/pdb7U8C/pdb
https://doi.org/10.2210/pdb7URD/pdb
https://doi.org/10.2210/pdb7WUX/pdb
https://doi.org/10.2210/pdb7QIE/pdb
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like RoseTTAFold All-Atom (P = 4.45 × 10−25). Extended Data Fig. 3 shows 
three examples in which AF3 achieves accurate predictions but docking 
tools Vina and Gold do not37. PoseBusters analysis was performed using 
a training cut-off of 30 September 2019 for AF3 to ensure that the model 
was not trained on any PoseBusters structures. To compare with the 
RoseTTAFold All-Atom results, we used PoseBusters version 1. Version 
2 (crystal contacts removed from the benchmark set) results including 
quality metrics are shown in Extended Data Fig. 4b–f and Extended Data 
Table 1. We use multiple seeds to ensure correct chirality and avoid 
slight protein–ligand clashing (as opposed to a method like diffusion 
guidance to enforce) but we are typically able to produce high-quality 
stereochemistry. Separately, we also train a version of AF3 that receives 
the ‘pocket information’ as used in some recent deep-learning work24,26 
(the results are shown in Extended Data Fig. 4a).

AF3 predicts protein–nucleic complexes and RNA structures with 
higher accuracy than RoseTTAFold2NA15 (Fig. 1c (second plot)). As 
RoseTTAFold2NA is validated only on structures below 1,000 resi-
dues, we use only structures below 1,000 residues from our recent PDB 
evaluation set for this comparison (Methods). AF3 is able to predict 
protein–nucleic structures with thousands of residues, an example 
of which is shown in Fig. 3a. Note that we do not compare directly to 
RoseTTAFold All-Atom, but benchmarks indicate that RoseTTAFold 
All-Atom is slightly less accurate than RoseTTAFold2NA for nucleic 
acid predictions29.

We also evaluated AF3 performance on the ten publicly available 
Critical Assessment of Structure Prediction 15 (CASP15) RNA targets: 
we achieve a higher average performance than RoseTTAFold2NA and 
AIchemy_RNA27 (the best AI-based submission in CASP1518,31) on the 
respective common subsets of our and their predictions (detailed 
results are shown in Extended Data Fig. 5a). We did not reach the 
performance of the best human-expert-aided CASP15 submission 
AIchemy_RNA239 (Fig. 1c (centre left)). Owing to limited dataset sizes, 
we do not report significance test statistics here. Further analysis of 
the accuracy of predicting nucleic acids alone (without proteins) is 
shown in Extended Data Fig. 5b.

Covalent modifications (bonded ligands, glycosylation, and modi-
fied protein residues and nucleic acid bases) are also accurately pre-
dicted by AF3 (Fig. 1c (centre right)). Modifications include those to 
any polymer residue (protein, RNA or DNA). We report accuracy as the 
percentage of successful predictions (pocket r.m.s.d. < 2 Å). We apply 
quality filters to the bonded ligands and glycosylation dataset (as does 
PoseBusters): we include only ligands with high-quality experimental 
data (ranking_model_fit > 0.5, according to the RCSB structure valida-
tion report, that is, X-ray structures with a model quality above the 
median). As with the PoseBusters set, the bonded ligands and glyco-
sylation datasets are not filtered by homology to the training dataset. 
Filtering on the basis of the bound polymer chain homology (using 
polymer template similarity < 40) yielded only five clusters for bonded 
ligands and seven clusters for glycosylation. We exclude multi-residue 
glycans here because the RCSB validation report does not provide a 
ranking_model_fit value for them. The percentage of successful pre-
dictions (pocket r.m.s.d. < 2 Å) for multi-residue glycans on all-quality 
experimental data is 42.1% (n = 131 clusters), which is slightly lower than 
the success rate for single-residue glycans on all-quality experimental 
data of 46.1% (n = 167). The modified residues dataset is filtered similarly 
to our other polymer test sets: it contains only modified residues in 
polymer chains with low homology to the training set (Methods). See 
Extended Data Table 1 for detailed results, and Extended Data Fig. 6 for 
examples of predicted protein, DNA and RNA structures with covalent 
modifications, including analysis of the impact of phosphorylation 
on predictions.

While expanding in modelling abilities, AF3 has also improved in 
protein complex accuracy relative to AlphaFold-Multimer (v.2.3)7,8. 
Generally, protein–protein prediction success (DockQ > 0.23)40 has 
increased (paired Wilcoxon signed-rank test, P = 1.8 × 10−18), with 

antibody–protein interaction prediction in particular showing a 
marked improvement (Fig. 1c (right); paired Wilcoxon signed-rank 
test, P = 6.5 × 10−5, predictions top-ranked from 1,000 rather than the 
typical 5 seeds; further details are provided in Fig. 5a). Protein monomer 
LDDT improvement is also significant (paired Wilcoxon signed-rank 
test, P = 1.7 × 10−34). AF3 has a very similar dependence on MSA depth 
to AlphaFold-Multimer v.2.3; proteins with shallow MSAs are predicted 
with lower accuracy (a comparison of the dependence of single-chain 
LDDT on MSA depth is shown in Extended Data Fig. 7a).

Predicted confidences track accuracy
As with AF2, AF3 confidence measures are well calibrated with accuracy. 
Our confidence analysis is performed on the recent PDB evaluation 
set, with no homology filtering and including peptides. The ligands 
category is filtered to high-quality experimental structures as described 
above, and considers standard non-bonded ligands only. See Extended 
Data Fig. 8 for a similar assessment on bonded ligand and other inter-
faces. All statistics are cluster-weighted (Methods) and consider the 
top-ranked prediction only (ranking details are provided in Supple-
mentary Methods 5.9.3).

In Fig. 4a (top row), we plot the chain pair interface-predicted TM 
(ipTM) score41 (Supplementary Methods 5.9.1) against interface accu-
racy measures: protein–protein DockQ, protein–nucleic interface 
LDDT (iLDDT) and protein–ligand success, with success defined as the 
percentage of examples under thresholded pocket-aligned r.m.s.d. 
values. In Fig. 4a (bottom row), we plot the average pLDDT per protein, 
nucleotide or ligand entity against our bespoke LDDT_to_polymer 
metric (metrics details are provided in the Methods), which is closely 
related to the training target of the pLDDT predictor.

In Fig. 4b–e, we highlight a single example prediction of 7T82, in 
which per-atom pLDDT colouring identifies unconfident chain tails, 
somewhat confident interfaces and otherwise confident secondary 
structure. In Fig. 4c, the same prediction is coloured by chain, along with 
DockQ interface scores in Fig. 4d and per-chain colouring displayed on 
the axes for reference. We see from Fig. 4e that PAE confidence is high 
for pink–grey and blue–orange residue pairs for which DockQ > 0.7, 
and least confident about pink–orange and pink–blue residue pairs 
that have DockQ ≈ 0. A similar PAE analysis of an example with protein 
and nucleic acid chains is shown in Extended Data Fig. 5c,d.

Model limitations
We note model limitations of AF3 with respect to stereochemistry, 
hallucinations, dynamics and accuracy for certain targets.

On stereochemistry, we note two main classes of violations. The 
first is that the model outputs do not always respect chirality (Fig. 5b), 
despite the model receiving reference structures with correct chirality 
as input features. To address this in the PoseBusters benchmark, we 
included a penalty for chirality violation in our ranking formula for 
model predictions. Despite this, we still observe a chirality violation 
rate of 4.4% in the benchmark. The second class of stereochemical 
violations is a tendency of the model to occasionally produce overlap-
ping (clashing) atoms in the predictions. This sometimes manifests 
as extreme violations in homomers in which entire chains have been 
observed to overlap (Fig. 5e). Penalizing clashes during ranking (Sup-
plementary Methods 5.9.3) reduces the occurrence of this failure mode 
but does not eliminate them. Almost all remaining clashes occur for 
protein–nucleic complexes with both greater than 100 nucleotides 
and greater than 2,000 residues in total.

We note that the switch from the non-generative AF2 model to the 
diffusion-based AF3 model introduces the challenge of spurious struc-
tural order (hallucinations) in disordered regions (Fig. 5d and Extended 
Data Fig. 1). Although hallucinated regions are typically marked as very 
low confidence, they can lack the distinctive ribbon-like appearance 
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that AF2 produces in disordered regions. To encourage ribbon-like 
predictions in AF3, we use distillation training from AF2 predictions, 
and we add a ranking term to encourage results with more solvent 
accessible surface area36.

A key limitation of protein structure prediction models is that they 
typically predict static structures as seen in the PDB, not the dynamical 
behaviour of biomolecular systems in solution. This limitation persists 
for AF3, in which multiple random seeds for either the diffusion head 
or the overall network do not produce an approximation of the solu-
tion ensemble.

In some cases, the modelled conformational state may not be correct 
or comprehensive given the specified ligands and other inputs. For 

example, E3 ubiquitin ligases natively adopt an open conformation 
in an apo state and have been observed only in a closed state when 
bound to ligands, but AF3 exclusively predicts the closed state for both 
holo and apo systems42 (Fig. 5c). Many methods have been developed, 
particularly around MSA resampling, that assist in generating diversity 
from previous AlphaFold models43–45 and may also assist in multistate 
prediction with AF3.

Despite the large advance in modelling accuracy in AF3, there are 
still many targets for which accurate modelling can be challenging. 
To obtain the highest accuracy, it may be necessary to generate a 
large number of predictions and rank them, which incurs an extra 
computational cost. A class of targets in which we observe this effect 
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accuracy was evaluated for various chain types as a function of chain-averaged 
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median (centre line) and the 5–95% confidence intervals (whiskers). n values 
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blue, 90–100). c, The same prediction coloured by chain. d, DockQ scores for 
protein–protein interfaces. e, PAE matrix of same prediction (darker is more 
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indicate the chain boundaries.
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strongly is antibody–antigen complexes, similar to other recent work46.  
Figure 5a shows that, for AF3, top-ranked predictions keep improving 
with more model seeds, even at as many as 1,000 (Wilcoxon signed-rank 
test between 5 and 1,000 seeds, P = 2.0 × 10−5 for percentage correct 
and P = 0.009 for percentage very high accuracy; ranking by protein–
protein interface ipTM). This large improvement with many seeds 
is not observed in general for other classes of molecules (Extended 
Data Fig. 7b). Using only one diffusion sample per model seed for the 
AF3 predictions rather than five (not illustrated) does not change 
the results significantly, indicating that running more model seeds 
is necessary for antibody score improvements, rather than just more  
diffusion samples.

 
Discussion
The core challenge of molecular biology is to understand and ultimately 
regulate the complex atomic interactions of biological systems. The AF3 
model takes a large step in this direction, demonstrating that it is pos-
sible to accurately predict the structure of a wide range of biomolecular 
systems in a unified framework. Although there are still substantial 
challenges to achieve highly accurate predictions across all interaction 
types, we demonstrate that it is possible to build a deep-learning system 
that shows strong coverage and generalization for all of these interac-
tions. We also demonstrate that the lack of cross-entity evolution-
ary information is not a substantial blocker to progress in predicting 
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beta-d-glucuronic acid—a target from the PoseBusters set (PDB: 7CTM). AF3 
predicts alpha-d-glucuronic acid; the differing chiral centre is indicated by an 
asterisk. The prediction shown is top-ranked by ligand–protein ipTM and with a 

chirality and clash penalty. c, Conformation coverage is limited. Ground-truth 
structures (grey) of cereblon in open (apo, PDB: 8CVP; left) and closed (holo 
mezigdomide-bound, PDB: 8D7U; right) conformations. Predictions (blue) of 
both apo (with 10 overlaid samples) and holo structures are in the closed 
conformation. The dashed lines indicate the distance between the N-terminal 
Lon protease-like and C-terminal thalidomide-binding domain. d, A nuclear 
pore complex with 1,854 unresolved residues (PDB: 7F60). The ground truth 
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are top-ranked by our global complex ranking metric with chiral mismatch and 
steric clash penalties (Supplementary Methods 5.9.1).
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these interactions and, moreover, substantial improvement in antibody 
results suggests AlphaFold-derived methods are able to model the 
chemistry and physics of classes of molecular interactions without 
dependence on MSAs. Finally, the large improvement in protein–ligand 
structure prediction shows that it is possible to handle the wide diver-
sity of chemical space within a general deep-learning framework and 
without resorting to an artificial separation between protein structure 
prediction and ligand docking.

The development of bottom-up modelling of cellular components 
is a key step in unravelling the complexity of molecular regulation 
within the cell, and the performance of AF3 shows that developing the 
right deep-learning frameworks can massively reduce the amount of 
data required to obtain biologically relevant performance on these 
tasks and amplify the impact of the data already collected. We expect 
that structural modelling will continue to improve not only due to 
advances in deep learning but also because continuing methodologi-
cal advances in experimental structure determination, such as the 
substantial improvements in cryo-electron microscopy and tomogra-
phy, will provide a wealth of new training data to further the improve 
the generalization ability of such models. The parallel developments 
of experimental and computational methods promise to propel us 
further into an era of structurally informed biological understanding 
and therapeutic development.
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Methods

Full algorithm details
Extensive explanations of the components are available in Supplemen-
tary Methods 2–5. Moreover, pseudocode is available in Supplementary 
Algorithms 1–31, network diagrams in Figs. 1d and  2a–c and Supple-
mentary Fig. 2, input features in Supplementary Table 5 and additional 
hyperparameters for training in Supplementary Tables 3, 4 and 7.

Training regime
No structural data used during training were released after 30 Sep-
tember 2021 and, for the model used in PoseBusters evaluations, we 
filtered out PDB32 structures released after 30 September 2021. One 
optimizer step uses a mini batch of 256 input data samples and during 
initial training 256 × 48 = 12,288 diffusion samples. For fine-tuning, the 
number of diffusion samples is reduced to 256 × 32 = 8,192. The model is 
trained in three stages—the initial training with a crop size of 384 tokens 
and two sequential fine tuning stages with crop sizes of 640 and 768 
tokens. Further details are provided in Supplementary Methods 5.2.

Inference regime
No inference time templates or reference ligand position features were 
released after 30 September 2021, and in the case of PoseBusters evalu-
ation, an earlier cut-off date of 30 September 2019 was used. The model 
can be run with different random seeds to generate alternative results, 
with a batch of diffusion samples per seed. Unless otherwise stated, 
all results are generated by selecting the top confidence sample from 
running 5 seeds of the same trained model, with 5 diffusion samples per 
model seed, for a total of 25 samples to choose from. Standard crystal-
lization aids are excluded from predictions (Supplementary Table 8).

Results are shown for the top-ranked sample and sample ranking 
depends on whether trying to select the overall best output globally, 
or the best output for some chain, interface or modified residue. Global 
ranking uses a mix of pTM and ipTM along with terms to reduce cases 
with large numbers of clashes and increase rates of disorder; individual 
chain ranking uses a chain specific pTM measure; interface ranking 
uses a bespoke ipTM measure for the relevant chain pair; and modi-
fied residue ranking uses average pLDDT over the residue of interest 
(Supplementary Methods 5.9.3).

Metrics
Evaluation compares a predicted structure to the corresponding 
ground-truth structure. If the complex contains multiple identical 
entities, assignment of the predicted units to the ground-truth units 
is found by maximizing LDDT. Assignment in local symmetry groups 
of atoms in ligands is solved by exhaustive search over the first 1,000 
per-residue symmetries as given by RDKit.

We measure the quality of the predictions with DockQ, LDDT or 
pocket-aligned r.m.s.d. For nucleic–protein interfaces, we measure 
interface accuracy through iLDDT, which is calculated from distances 
between atoms across different chains in the interface. DockQ and 
iLDDT are highly correlated (Extended Data Fig. 9), so the standard 
cut-offs for DockQ can be translated to equivalent iLDDT cut-offs. 
Nucleic acid LDDTs (intrachains and interface) were calculated with an 
inclusion radius of 30 Å compared with the usual 15 Å used for proteins, 
owing to their larger scale. For confidence calibration assessment, we 
use a bespoke LDDT (LDDT_to_polymer) metric that considers differ-
ences from each atom of a given entity to any Cα or C1′ polymer atom 
within its inclusion radius. This is closely related to how the confidence 
prediction is trained (Supplementary Methods 4.3.1).

Pocket-aligned r.m.s.d. is computed as follows: the pocket is defined 
as all heavy atoms within 10 Å of any heavy atom of the ligand, restricted 
to the primary polymer chain for the ligand or modified residue being 
scored, and further restricted to only backbone atoms for proteins. 
The primary polymer chain is defined variously: for PoseBusters,  

it is the protein chain with the most atoms within 10 Å of the ligand; for 
bonded ligand scores, it is the bonded polymer chain; and for modified 
residues, it is the chain in which the residue is contained (minus that 
residue). The pocket is used to align the predicted structure to the 
ground-truth structure with least-squares rigid alignment and then 
the r.m.s.d. is computed on all heavy atoms of the ligand.

Recent PDB evaluation set
General model evaluation was performed on our recent PDB set consist-
ing of 8,856 PDB complexes released between 1 May 2022 and 12 January 
2023. The set contains almost all PDB complexes released during that 
period that are less than 5,120 model tokens in size (Supplementary 
Methods 6.1). Single chains and interfaces within each structure were 
scored separately rather than only looking at full complex scores, and 
clustering was then applied to chains and interfaces so that scores could 
be aggregated first within clusters and then across clusters for mean 
scores, or using a weighting of inverse cluster size for distributional 
statistics (Supplementary Methods 6.2 and 6.4).

Evaluation on ligands excludes standard crystallization aids (Sup-
plementary Table 8), our ligand exclusion list (Supplementary Table 9) 
and glycans (Supplementary Table 10). Bonded and non-bonded ligands 
are evaluated separately. Ions are only included when specifically men-
tioned (Supplementary Table 11).

The recent PDB set is filtered to a low homology subset (Supplemen-
tary Methods 6.1) for some results where stated. Homology is defined 
as sequence identity to sequences in the training set and is measured 
by template search (Supplementary Methods 2.4). Individual poly-
mer chains in evaluation complexes are filtered out if the maximum 
sequence identity to chains in the training set is greater than 40%, where 
sequence identity is the percentage of residues in the evaluation set 
chain that are identical to the training set chain. Individual peptide 
chains (protein chains with less than 16 residues) are always filtered 
out. For polymer–polymer interfaces, if both polymers have greater 
than 40% sequence identity to two chains in the same complex in the 
training set, then the interface is filtered out. For interfaces to a peptide, 
the interface is filtered out if the non-peptide entity has greater than 
40% sequence identity to any chain in the training set.

To compare the quality of prediction of protein–protein interfaces 
and protein monomers against that of AlphaFold-Multimer (v.2.3)8, and 
to compare the dependence of single-protein-chain prediction quality 
on MSA depth, we restrict the low-homology recent PDB set to com-
plexes with fewer than 20 protein chains and fewer than 2,560 tokens. 
We compare against unrelaxed AlphaFold-Multimer v.2.3 predictions.

To study antibody-antigen interface prediction, we filter the low 
homology recent PDB set to complexes that contain at least one  
protein–protein interface where one of the protein chains is in one 
of the two largest PDB chain clusters (these clusters are representa-
tive of antibodies). We further filter to complexes with at most 2,560 
tokens and with no unknown amino acids in the PDB to allow extensive 
comparison against relaxed predictions of AlphaFold-Multimer v2.3. 
That leaves 71 antibody–antigen complexes, containing 166 antibody–
antigen interfaces spanning 65 interface clusters.

MSA depth analysis (Extended Data Fig. 7a) was based on computing 
the normalized number of effective sequences (Neff) for each position of 
a query sequence. Per-residue Neff values were obtained by counting the 
number of non-gap residues in the MSA for this position and weighting 
the sequences using the Neff scheme49 with a threshold of 80% sequence 
identity measured on the region that is non-gap in either sequence.

Nucleic acid prediction baseline
For benchmarking performance on nucleic acid structure prediction, 
we report baseline comparisons to an existing machine learning sys-
tem for protein–nucleic acid and RNA tertiary structure prediction,  
RoseTTAFold2NA18. We run the open source RF2NA50 with the same 
MSAs as those that were used for AF3 predictions. For comparison 
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between AF3 and RF2NA, a subset of our recent PDB set was chosen 
to meet the RF2NA criteria (<1,000 total residues and nucleotides).  
As RF2NA was not trained to predict systems with DNA and RNA, analy-
sis is limited to targets with only one nucleic acid type. No system was 
publicly available at time of writing for baseline comparisons on data 
with arbitrary combinations of biomolecular types in PDB.

As an additional baseline for RNA tertiary structure prediction, 
we evaluate AF3 performance on CASP15 RNA targets that were pub-
licly available as of 1 December 2023 (R1116/8S95, R1117/8FZA, R1126 
(downloaded from the CASP15 website https://predictioncenter.org/
casp15/TARGETS_PDB/R1126.pdb), R1128/8BTZ, R1136/7ZJ4, R1138/
[7PTK/7PTL], R1189/7YR7 and R1190/7YR6). We compare the top-1 
ranked predictions and, where multiple ground-truth structures exist 
(R1136), the prediction is scored against the closest state. We display 
comparisons to RF2NA as a representative machine learning system; 
AIchemy_RNA2 as the top performing entrant with human intervention; 
and AIchemy_RNA as the top performing machine learning system. All 
entrants’ predictions were downloaded from the CASP website and 
scored internally.

PoseBusters
While other analyses used an AlphaFold model trained on PDB data 
released before a cut-off of 30 September 2021, our PoseBusters analy-
sis was conducted on a model (with identical architecture and similar 
training schedule) differing only in the use of an earlier 30 Septem-
ber 2019 cut-off. This analysis therefore did not include training data, 
inference time templates or ‘ref_pos’ features released after this date.

Inference was performed on the asymmetric unit from specified 
PDBs, with the following minor modifications. In several PDB files, 
chains clashing with the ligand of interest were removed (7O1T, 7PUV, 
7SCW, 7WJB, 7ZXV, 8AIE). Another PDB entry (8F4J) was too large to 
inference the entire system (over 5,120 tokens), so we included only 
protein chains within 20 Å of the ligand of interest. Five model seeds, 
each with five diffusion samples, were produced per target, resulting in 
25 predictions, which were ranked by quality and predicted accuracy: 
the ranking score was calculated from an ipTM aggregate (Supplemen-
tary Methods 5.9.3 (point 3)), then further divided by 100 if the ligand 
had chirality errors or had clashes with the protein.

For pocket-aligned r.m.s.d., first alignment between the pre-
dicted and ground-truth structures was conducted by aligning to the 
ground-truth pocket backbone atoms (CA, C or N atoms within 10 Å 
of the ligand of interest) from the primary protein chain (the chain 
with the greatest number of contacts within 10 Å of the ligand). The 
PoseBusters Python package v.0.2.751 was used to score r.m.s.d. and 
violations from the pocket-aligned predictions.

While AlphaFold models are ‘blind’ to the protein pocket, docking is 
often performed with knowledge of the protein pocket residues. For 
example, Uni-Mol specifies the pocket as any residue within 6 Å of the 
heavy atoms in the ligand of interest26. To evaluate the ability of AF3 to 
dock ligands accurately when given pocket information, we fine-tuned 
a 30 September 2019 cut-off AF3 model with an additional token feature 
specifying pocket–ligand pairs (Supplementary Methods 2.8). Specifi-
cally, an additional token feature was introduced, set to true for a ligand 
entity of interest and any pocket residues with heavy atoms within 6 Å 
of the ligand entity. At training time, a single random ligand entity is 
chosen to use in this feature. Note that multiple ligand chains with the 
same entity (CCD code) may be selected. At inference time, the ligand 
entity was chosen based on the ligand of interest’s CCD code, so again 
multiple ligand chains were occasionally chosen. The results of this 
analysis are shown in Extended Data Fig. 4.

Model performance analysis and visualization
Data analysis used Python v.3.11.7 (https://www.python.org/), NumPy 
v.1.26.3 (https://github.com/numpy/numpy), SciPy v.1.9.3 (https://www.
scipy.org/), seaborn v.0.12.2 (https://github.com/mwaskom/seaborn), 

Matplotlib v.3.6.1 (https://github.com/matplotlib/matplotlib), pan-
das v.2.0.3 (https://github.com/pandas-dev/pandas), statsmodels 
v.0.12.2 (https://github.com/statsmodels/statsmodels), RDKit v.4.3.0 
(https://github.com/rdkit/rdkit) and Colab (https://research.google.
com/colaboratory). TM-align v.20190822 (https://zhanglab.dcmb.
med.umich.edu/TM-align/) was used for computing TM-scores. Struc-
ture visualizations were created in Pymol v.2.55.5 (https://github.com/
schrodinger/pymol-open-source).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All scientific datasets used to create training and evaluation inputs are 
freely available from public sources. Structures from the PDB were used 
for training and as templates (https://files.wwpdb.org/pub/pdb/data/
assemblies/mmCIF/; sequence clusters are available at https://cdn.rcsb.
org/resources/sequence/clusters/clusters-by-entity-40.txt; sequence 
data are available at https://files.wwpdb.org/pub/pdb/derived_data/). 
Training used a version of the PDB downloaded 12 January 2023, while 
template search used a version downloaded 28 September 2022. We 
also used the Chemical Components Dictionary downloaded on 19 
October 2023 (https://www.wwpdb.org/data/ccd). We show experi-
mental structures from the PDB under accession numbers 7PZB  
(ref. 52), 7PNM (ref. 53), 7TQL (ref. 54), 7AU2 (ref. 55), 7U8C (ref. 56), 
7URD (ref. 57), 7WUX (ref. 58), 7QIE (ref. 59), 7T82 (ref. 60), 7CTM  
(ref. 61), 8CVP (ref. 42), 8D7U (ref. 42), 7F60 (ref. 62), 8BTI (ref. 63), 7KZ9 
(ref. 64), 7XFA (ref. 65), 7PEU (ref. 66), 7SDW (ref. 67), 7TNZ (ref. 68), 
7R6R (ref. 69), 7USR (ref. 70) and 7Z1K (ref. 71). We also used the fol-
lowing publicly available databases for training or evaluation. Detailed 
usage is described in Supplementary Methods 2.2 and 2.5.2. UniRef90 
v.2020_01 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_
releases/release-2020_01/uniref/), UniRef90 v.2020_03 (https://ftp.
ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2020_03/
uniref/), UniRef90 v.2022_05 (https://ftp.ebi.ac.uk/pub/databases/ 
uniprot/previous_releases/release-2022_05/uniref/), Uniclust30 
v.2018_08 (https://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/), 
Uniclust30 v.2021_03 (https://wwwuser.gwdg.de/~compbiol/uni-
clust/2021_03/), MGnify clusters v.2018_12 (https://ftp.ebi.ac.uk/pub/
databases/metagenomics/peptide_database/2018_12/), MGnify clus-
ters v.2022_05 (https://ftp.ebi.ac.uk/pub/databases/metagenomics/
peptide_database/2022_05/), BFD (https://bfd.mmseqs.com), RFam 
v.14.9 (https://ftp.ebi.ac.uk/pub/databases/Rfam/14.9/), RNAcentral 
v.21.0 (https://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/21.0/), 
Nucleotide Database (as of 23 February 2023) (https://ftp.ncbi.nlm.
nih.gov/blast/db/FASTA/nt.gz), JASPAR 2022 (https://jaspar.elixir.
no/downloads/; see https://jaspar.elixir.no/profile-versions for  
version information), SELEX protein sequences from the supplemen-
tary tables of ref. 72 and SELEX protein sequences from the supple-
mentary tables of ref. 73.

Code availability
AlphaFold 3 will be available as a non-commercial usage only server at 
https://www.alphafoldserver.com, with restrictions on allowed ligands 
and covalent modifications. Pseudocode describing the algorithms 
is available in the Supplementary Information. Code is not provided.
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Extended Data Fig. 1 | Disordered region prediction. a, Example prediction 
for a disordered protein from AlphaFoldMultimer v2.3, AlphaFold 3, and 
AlphaFold 3 trained without the disordered protein PDB cross distillation set. 
Protein is DP02376 from the CAID 2 (Critical Assessment of protein Intrinsic 
Disorder prediction) set. Predictions coloured by pLDDT (orange: pLDDT <= 50, 

yellow: 50 < pLDDT <= 70, light blue: 70 < pLDDT <= 90, and dark blue: 90 <= 
pLDDT < 100). b, Predictions of disorder across residues in proteins in the CAID 
2 set, which are also low homology to the AF3 training set. Prediction methods 
include RASA (relative accessible surface area) and pLDDT (N = 151 proteins; 
46,093 residues).



Extended Data Fig. 2 | Accuracy across training. Training curves for initial 
training and fine tuning showing LDDT (local distance difference test) on our 
evaluation set as a function of optimizer steps. One optimizer step uses a  
mini batch of 256 trunk samples and during initial training 256 * 48 = 12,288 
diffusion samples. For fine tuning the number of diffusion samples is reduced 

to 256 * 32 = 8,192. The scatter plot shows the raw data points and the lines show 
the smoothed performance using a median filter with a kernel width of 9 data 
points. The dashed lines mark the points where the smoothed performance 
passes 90% and 97% of the initial training maximum for the first time.
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Extended Data Fig. 3 | AlphaFold 3 predictions of PoseBusters examples  
for which Vina and Gold were inaccurate. Predicted protein chains are  
shown in blue, predicted ligands in orange, and ground truth in grey. a, Human 
Notum bound to inhibitor ARUK3004556 (PDB ID 8BTI, ligand RMSD: 0.65 Å). 

b, Pseudomonas sp. PDC86 Aapf bound to HEHEAA (PDB ID 7KZ9, ligand  
RMSD: 1.3 Å). c, Human Galectin-3 carbohydrate-recognition domain in 
complex with compound 22 (PDB ID 7XFA, ligand RMSD: 0.44 Å).

https://doi.org/10.2210/pdb8BTI/pdb
https://doi.org/10.2210/pdb7KZ9/pdb
https://doi.org/10.2210/pdb7XFA/pdb


Extended Data Fig. 4 | PoseBusters analysis. a, Comparison of AlphaFold 3 
and baseline method protein-ligand binding success on the PoseBusters 
Version 1 benchmark set (V1, August 2023 release). Methods classified by the 
extent of ground truth information used to make predictions. Note all methods 
that use pocket residue information except for UMol and AF3 also use ground 
truth holo protein structures. b, PoseBusters Version 2 (V2, November 2023 
release) comparison between the leading docking method Vina and AF3 2019 
(two-sided Fisher exact test, N = 308 targets, p = 2.3 * 10−8). c, PoseBusters V2 
results of AF3 2019 on targets with low, moderate, and high protein sequence 
homology (integer ranges indicate maximum sequence identity with proteins 
in the training set). d, PoseBusters V2 results of AF3 2019 with ligands split by 

those characterized as “common natural” ligands and others. “Common 
natural” ligands are defined as those which occur greater than 100 times in the 
PDB and which are not non-natural (by visual inspection). A full list may be 
found in Supplementary Table 15. Dark bar indicates RMSD < 2 Å and passing 
PoseBusters validity checks (PB-valid). e, PoseBusters V2 structural accuracy 
and validity. Dark bar indicates RMSD < 2 Å and passing PoseBusters validity 
checks (PB-valid). Light hashed bar indicates RMSD < 2 Å but not PB valid.  
f, PoseBusters V2 detailed validity check comparison. Error bars indicate exact 
binomial distribution 95% confidence intervals. N = 427 targets for RoseTTAFold 
All-Atom and 428 targets for all others in Version 1; 308 targets in Version 2.
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Extended Data Fig. 5 | Nucleic acid prediction accuracy and confidences.  
a, CASP15 RNA prediction accuracy from AIChemy_RNA (the top AI-based 
submission), RoseTTAFold2NA (the AI-based method capable of predicting 
proteinRNA complexes), and AlphaFold 3. Ten of the 13 targets are available in 
the PDB or via the CASP15 website for evaluation. Predictions are downloaded 
from the CASP website for external models. b, Accuracy on structures 
containing low homology RNA-only or DNA-only complexes from the recent 
PDB evaluation set. Comparison between AlphaFold 3 and RoseTTAFold2NA 
(RF2NA) (RNA: N = 29 structures, paired Wilcoxon signed-rank test,  
p = 1.6 * 10−7; DNA: N = 63 structures, paired two-sided Wilcoxon signed-rank 

test, p = 5.2 * 10−12). Note RF2NA was only trained and evaluated on duplexes 
(chains forming at least 10 hydrogen bonds), but some DNA structures in this 
set may not be duplexes. Box, centerline, and whiskers boundaries are at  
(25%, 75%) intervals, median, and (5%, 95%) intervals. c Predicted structure of  
a mycobacteriophage immunity repressor protein bound to double stranded 
DNA (PDB ID 7R6R), coloured by pLDDT (left; orange: 0–50, yellow: 50–70, cyan 
70–90, and blue 90–100) and chain id (right). Note the disordered N-terminus 
not entirely shown. d, Predicted aligned error (PAE) per token-pair for the 
prediction in c with rows and columns labelled by chain id and green gradient 
indicating PAE.

https://doi.org/10.2210/pdb7R6R/pdb


Extended Data Fig. 6 | Analysis and examples for modified proteins and 
nucleic acids. a, Accuracy on structures. containing common phosphorylation 
residues (SEP, TPO, PTR, NEP, HIP) from the recent PDB evaluation set. 
Comparison between AlphaFold 3 with phosphorylation modelled, and 
AlphaFold 3 without modelling phosphorylation (N = 76 clusters, paired 
two-sided Wilcoxon signed-rank test, p = 1.6 * 10−4). Note, to predict a structure 
without modelling phosphorylation, we predict the parent (standard) residue 
in place of the modification. AlphaFold 3 generally achieves better backbone 
accuracy when modelling phosphorylation. Error bars indicate exact binomial 
distribution 95% confidence intervals. b, SPOC domain of human SHARP in 
complex with phosphorylated RNA polymerase II C-terminal domain (PDB ID 
7Z1K), predictions coloured by pLDDT (orange: 0–50, yellow: 50–70, cyan  
70–90, and blue 90–100). Left: Phosphorylation modelled (mean pocket- 
aligned RMSDCα 2.104 Å). Right: Without modelling phosphorylation (mean 

pocketaligned RMSDCα 10.261 Å). When excluding phosphorylation, AlphaFold 
3 provides lower pLDDT confidence on the phosphopeptide. c, Structure of 
parkin bound to two phospho-ubiquitin molecules (PDB ID 7US1), predictions 
similarly coloured by pLDDT. Left: Phosphorylation modelled (mean pocket- 
aligned RMSDCα 0.424 Å). Right: Without modelling phosphorylation (mean 
pocket-aligned RMSDCα 9.706 Å). When excluding phosphorylation, AlphaFold 
3 provides lower pLDDT confidence on the interface residues of the incorrectly 
predicted ubiquitin. d, Example structures with modified nucleic acids. Left: 
Guanosine monophosphate in RNA (PDB ID 7TNZ, mean pocket-aligned modified 
residue RMSD 0.840 Å). Right: Methylated DNA cytosines (PDB ID 7SDW, mean 
pocket-aligned modified residue RMSD 0.502 Å). Welabel residues of the 
predicted structure for reference. Ground truth structure in grey; predicted 
protein in blue, predicted RNA in purple, predicted DNA in magenta, predicted 
ions in orange, with predicted modifications highlighted via spheres.

https://doi.org/10.2210/pdb7Z1K/pdb
https://doi.org/10.2210/pdb7US1/pdb
https://doi.org/10.2210/pdb7TNZ/pdb
https://doi.org/10.2210/pdb7SDW/pdb
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Extended Data Fig. 7 | Model accuracy with MSA size and number of seeds. 
a, Effect of MSA depth on protein prediction accuracy. Accuracy is given as 
single chain LDDT score and MSA depth is computed by counting the number 
of non-gap residues for each position in the MSA using the Neff weighting 
scheme and taking the median across residues (see Methods for details on Neff). 
MSA used for AF-M 2.3 differs slightly from AF3; the data uses the AF3 MSA 
depth for both to make the comparison clearer. The analysis uses every protein 
chain in the low homology Recent PDB set, restricted to chains in complexes 
with fewer than 20 protein chains and fewer than 2,560 tokens (see Methods  
for details on Recent PDB set and comparisons to AF-M 2.3). The curves are 

obtained through Gaussian kernel average smoothing (window size is 0.2 units 
in log10(Neff)); the shaded area is the 95% confidence interval estimated using 
bootstrap of 10,000 samples. b, Increase in ranked accuracy with number of 
seeds for different molecule types. Predictions are ranked by confidence,  
and only the most confident per interface is scored. Evaluated on the low 
homology recent PDB set, filtered to less than 1,536 tokens. Number of clusters  
evaluated: dna-intra = 386, protein-intra = 875, rnaintra = 78, protein-dna = 307, 
protein-rna = 102, protein-protein (antibody = False) = 697, protein-protein 
(antibody = True) = 58. Confidence intervals are 95% bootstraps over 1,000 
samples.



Extended Data Fig. 8 | Relationship between confidence and accuracy  
for protein interactions with ions, bonded ligands and bonded glycans. 
Accuracy is given as the percentage of interface clusters under various pocket- 
aligned RMSD thresholds, as a function of the chain pair ipTM of the interface. 

The ions group includes both metals and nonmetals. N values report the 
number of clusters in each band. For a similar analysis on general ligand-protein 
interfaces, see Fig. 4 of main text.
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Extended Data Fig. 9 | Correlation of DockQ and iLDDT for protein-protein interfaces. One data point per cluster, 4,182 clusters shown. Line of best fit with a 
Huber regressor with epsilon 1. DockQ categories correct (>0.23), and very high accuracy (>0.8) correspond to iLDDTs of 23.6 and 77.6 respectively.



Extended Data Table 1 | Prediction accuracy across biomolecular complexes

AlphaFold 3 Performance on PoseBusters V1 (August 2023 release), PoseBusters V2 (November 6th 2023 release), and our Recent PDB evaluation set. For ligands and nucleic acids N indicates 
number of structures; for covalent modifications and proteins N indicates number of clusters.
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