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ABSTRACT 

A model of a neural system where a group of neurons projects to another group of 
neurons is discussed. We assume that a trace is the simultaneous pattern of individual 
activities shown by a group of neurons. We assume synaptic interactions add linearly 
and that synaptic weights (quantitative measure of degree of coupling between two cells) 
can be coded in a simple but optimal way where changes in synaptic weight are proportion- 
al to the product of pre- and postsynaptic activity at a given time. Then it is shown that this 
simple system is capable of "memory" in the sense that it can (1) recognize a previously 
presented trace and (2) if two traces have been associated in the past (that is, if trace 
f w a s  impressed on the first group of neurons and trace ~ was impressed on the second 
group of neurons and synaptic weights coupling the two groups changed according to 
the above rule) presentation of f to the first group of neurons gives rise to 0 plus a 
calculable amount of noise at the second set of neurons. This kind of memory is called 
an "interactive memory" since distinct stored traces interact in storage. It is shown that 
this model can effectively perform many functions, Quantitative expressions are derived 
for the average signal to noise ratio for recognition and one type of association. The 
selectivity of the system is discussed. References to physiological data are made where 
appropriate. A sketch of a model of mammalian cerebral cortex which generates an 
interactive memory is presented and briefly discussed. We identify a trace with the 
activity of groups of cortical pyramidal cells. Then it is argued that certain plausible 
assumptions about the properties of the synapses coupling groups of pyramidal cells 
lead to the generation of an interactive memory. 

All  t h a t  we  are  is t he  resul t  o f  w h a t  we have  t h o u g h t :  it is f o u n d e d  o n  o u r  

t h o u g h t s ,  it is m a d e  u p  o f  o u r  thoughts . - -Dhammapada,  I.I .  

I N T R O D U C T I O N  

M e m o r y  is a m e n t a l  f u n c t i o n  w h i c h  seems  in its genera l i ty  t o  be  a 

c en t r a l  p r o b l e m  in n e u r o p h y s i o l o g y  a n d  n e u r o p s y c h o l o g y .  E x p e r i m e n t s  

o n  m e m o r y  a re  diff icult  t o  p e r f o r m  a n d  g o o d  d a t a  is scan ty ,  a l t h o u g h  
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considerable information about memory function in higher mammals  has 
accumulated in recent years. 

In two previous papers 1 discussed a very simple model for the organiza- 
tion of long term memory storage [3]. Basically, the model assumes, first, 
that memory "traces" (the items which are to be s tored-- the basic 
elementary unit of  memory) are composed of a complex pattern of  indi- 
vidual activities shown by a large spatial array of  elements, and, second, 
that memory storage is formed by constructing a storage array which is the 
sum of  many of the basic "traces." 

More precisely, the trace was represented by an N element vector, fk, 
where N is very large. Elements offk can take any values. (They are not 
binary elements.) Assume we have K traces (fl , f2 . . . . .  rio to be stored. 
Then, we represented the memory array in this model by a storage vector, 
~, defined as 

k = K  

 =ZL. 
k = l  

represents our sole information about the system. 
Storage of traces is simple in such a system and could be performed by 

a simple physiological mechanism; for example, strengthening of synaptic 
contacts by an amount  proportional to activity in the presynaptic cell 
would be sufficient in some neuron models. It  is not clear, however, that 
it is possible to extract much information from such a system. The retrieval 
problem was discussed in the previous papers and it was shown that it was 
indeed possible for such a simple system to perform many of the functions 
which would be expected of a biological memory. Some of the properties 
shown by the system, particularly the kinds of  mistakes and distortions 
it makes, are reminiscent of those made by a human memory [3]. 

The following discussion is an extension of this simple idea to another 
model. It is an attempt to model a very common kind of anatomical 
configuration in the central nervous system where one large group of  
neurons projects to another large group of neurons, or projects to itself 
via recurrent collaterals having a significantly long conduction time. 
Examples of  this type of highly parallel projection are legion: there are 
many projections of  the thalamic nucleii to cortex, for example, and 
extensive intracortical projection systems. 

I f  a group of neurons projects to another we shall show that strengthen- 
ing or weakening the synaptic connection between the two groups accord- 
ing to a simple multiplicative function of activity in pre- and postsynaptic 
cells automatically generates an interactive memory akin to those discussed 
in the previous paper. The properties of  this model will be discussed and 
a model of  mammalian cortex embodying some of these ideas will be 
sketched in the last section of the paper. 
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T H E  M O D E L  

Let us consider two groups o f  neurons, ~ and/3,  where ~ sends pro- 
jections to fi (Fig. 1). We shall assume that  (1) Exactly M neurons of  
project to each neuron of/3, (2) Exactly M neurons of /3  are projected to 
by each neuron of  rz, (3) Synaptic weights add linearly and the activity of  
a neuron in/3 is propor t ional  to the sum o f  the synaptic weights times 
activity o f  neurons in 7, and (4) ~ and/3 have the same number  of  neurons, 
N. Assumptions (1), (2) and (4) are approximations of  the real situation 
for mathematical  convenience. 

o< M = 5  0 

set of  N neurons set o f  N neurons  
FIG. I. A group of neurons, ~, projects to another group of neurons, ft. M neurons 

of ~ project to each neuron of B, and M neurons of B are projected to by each neuron of 
~. Both groups have N neurons. 

Assumption (3) requires justification. There is an extensive literature on 
neural models which assumes that  the nervous system is basically digital, 
that  is, the presence or absence of  a spike at a given moment  is the matter 
o f  most  importance to the nervous system. This approach to neural 
modeling is interesting mathematically, and has led to some elegant and 
impor tant  results in au tomata  theory (Ref. 23, chap. 3). However,  a great 
deal o f  experimental evidence now suggests that  an analog model o f  the 
mammal ian  central nervous system is correct in many cases. 

Evidence indicates that  for  most  systems in mammals,  particularly the 
"higher"  systems, what  is significant to the system is the behavior of  the 
cell over a short period o f  t ime- - the  average firing frequency, for example 
- - a n d  not  the presence or absence of  a single spike. Perkel and Bullock 



200 JAMES A. ANDERSON 

[26] have made an extensive list of biological systems and the apparent 
kinds of neural codes used, many of which depend on temporal spike 
patterns over a period long in relation to the duration of a single spike. 

One carefully studied sensory system in primates shows this kind of  
coding. Mountcastle has studied the tactile sensitivity of  the monkey hand 
[24]. A stimulator probe indented the skin of  the thenar eminence of the 
palm of a monkey. The number of  impulses in 600 msec. was recorded 
from myelinated axons of the palmar branch of the median nerve and was 
found to be linearly related to the indentation of skin produced by the 
stimulator probe. The same linear relation to skin indentation was found 
in units in the ventrobasal thalamus to stimuli applied to the glabrous 
skin of  the monkey hand if the spontaneous activity level of  the cell was 
subtracted. The same linearity of  response was found in a cortical neuron 
in the post-central gyrus of  an unanesthetized monkey. Human observers 
gave a similar linear relation between subjective intensity and depth of  
mechanical stimulation by a probe tip applied to the pad of the middle 
finger. 

A strictly linear relation between a stimulus (depth of indentation) and 
neuronal response is rare, however, what is often found and which en- 
couraged Mountcastle to formulate it as a general rule for sensory systems, 
is that  there is a linear relation between the output of  the first order 
afferent fiber and sensory response of  the nervous system. Most receptors 
are markedly nonlinear transducers; for example, response of single 
tactile receptors (average number of  impulses to a stimulus) in the hairy 
skirt areas of  the hand gives a power function response to indentation with 
an exponent of  about 0.5. Power functions as transducer outputs are 
common, and generally the exponent is preserved up to primary sensory 
cortex. 

Maffei et al. have shown [20, 21] that the firing rate of  lateral geniculate 
body (LGB) cells follows the sinusoidal intensity modulation of a light 
stimulus in quite linear fashion. Mallei has also shown that the LGB may 
use spatial averaging to improve signal to noise ratio. Their data indicates 
that spatial averaging preserves the linearity of  the response of the cell, 
in consonance with our assumption (3). 

It would be unrealistic to claim that neurons do not introduce sub- 
stantial nonlinearities. (See Ref. 7 for examples of  some of the significant 
nonlinearities encountered in LGB cells under conditions similar to those 
of  Maffei). However, the overall picture is of  much less nonlinearity than 
might at first be expected from a system incorporating such nonlinear 
threshold devices as neurons. 

At this point it might be wise to make the distinction often made in 
circuit analysis between large and small signal characteristics. We would 
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expect a linear addition assumption to be quite accurate for cortical neurons 
if the stimulus increment was small, whereas significant nonlinearities 
would occur if the increment was large. The particular system under 
consideration is of  paramount  importance. Burns (Ref. 6, chap. 6) has 
shown that interactions between eyes can be quite nonlinear. Thus Burns 
finds that in primary visual cortex, where cells respond to stimuli applied 
to each eye, presentation of the same stimulus to both eyes in spatial 
register gives enhancement of  firing rate far beyond what would be expected 
from the sum of the response to stimulation of either eye alone. 

Before we go further, let us make some comments about the linear 
assumption. First, the model assumes, in general, small signal linearity in 
storage. Second, retrieval, in the model presented here, assumes as well 
large-signal linearity, but the model is not very sensitive to the details of  
the large-signal transfer function as long as monotonicity is preserved, 
that is, as long as increasing excitatory synaptic activity increases post- 
synaptic cell firing or increasing inhibitory activity decreases cell firing. 

We will assume that what is of  interest in our model is the simultaneous 
activity of  the entire group of neurons, thus we define a trace to be this 
pattern of individual activities. We further assume that traces are "large" 
in that  a single trace contains a good deal of  information. We will make 
calculations with "traces" as our elementary units. 

Since traces are assumed to be the simultaneous activities of large groups 
of neurons, we can formally represent a trace as a vector of  N elements, 
where N is the number of  neurons present. Thus, if f is a trace, we define 
the "power"  o f f ,  P, as the vector dot product, 

P = f - f .  
We assume that traces add together in storage, they are not separated. 
Thus, our initial approach to calculations will be to place some statistical 
constraints on the set of  allowable traces. We assume they have equal 
power, P. Since power, in some intuitive sense, stands for the " importance"  
of a trace, assumption of equal trace power seems unnatural. The calcula- 
tions to follow could equally well have been carried out using P as the 
"average" power of a trace in the set of  allowable traces. However, the 
results to be discussed are not basically changed and the additional 
complications in exposition seemed to make the equal power assumption 
a simplifying convenience. 

We assume that different traces in a sum are uncorrelated. We assume 
that, on the average over sets of sums of allowable traces, that the statistics 
of every element will be the same. 

By the Central Limit Theorem, we predict that the value of the sum 
of many uncorrelated traces approximates a normally distributed random 
variable. 
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Since we know nothing of the details of  the traces involved in any 
particular sum, values we calculate are "averages," calculated over many 
sets of  sums of allowable traces. 

As discussed in Ref. 3, we assume that the mean value of elements in 
a trace is zero. This assumption can be shown to give nearly optimal 
properties (optimal in the sense that the signal power to noise power 
ratio is maximized) to the retrieval system to be discussed and greatly 
simplifies calculations. The zero mean assumption implies both positive 
and negative values for elements in a trace. However, neurons can only 
have positive average firing frequencies. We can meet the zero mean 
requirement by assuming neurons have a spontaneous activity level and 
then defining the activity comprising a trace as deflections, plus or minus, 
f rom this resting level. Other realizations of  this requirement are possible, 
but this definition seems natural. Much cortical data shows transduction 
in both a positive and negative direction which often seems to be referred 
to the spontaneous activity level (see Ref. 24, p. 398), the well known data 
of  Fox and O'Brien [13], as well as the data in other experimental papers. 
This implies that the neuron would be expected to act something like a 
limiter with less dynamic range in the negative than positive direction. 
Freeman [14, 15] in a well-developed and experimentally supported 
electrophysiological model of  cat prepyriform cortex has developed a 
basically linear model with clipping to explain the results of  his extensive 
experiments. 

Calculations will be made as follows. We will be interested in the 
behavior of one trace in the sum. We will approximate the sum of the other 
traces by the values taken by a normally distributed random variable and 
with this additive "noise" can then make simple calculations. 

Let us now return to the model shown in Fig. 1. Let us consider an 
input trace, f ,  to a. We have assumed that the activity of  a neuron in 
fl will be given by the sum of the activities coupled to the neuron by the 
M neurons from a projecting to it [Assumption (3)]. I f  we denote by aij 
the value of the synapse connecting the ith element in a with the jth 
element in fl, and if 9(j) is the value taken by the jth element in fl, then 
we have as the fundamental relation for our system, 

i = N  

g(j) = ~ aijf(i). 
i = 1  

We see that if  f is represented by a column vector and if ali are elements, 
representing synaptic weights in a "connectivity matrix", ,4, then a vector 
~, representing activity in fl is generated according to 
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We are interested in the following problem. We have tracef~,  represent- 
ing activity in ~, which we wish to  have associated with another,  trace .~, 
representing activity in fl, thus we wish to construct a connectivity matrix 
A so that  

gl = A l l ,  
as shown in Fig. 2. 

n o  

FIG. 2. The general scheme for associating two distinct traces, f, and #. Trace )Vis 
impressed on group of neurons a. The connectivity matrix, A, coupling c~ and ]3 gives 
rise to trace g-(which was associated with jTin the past) plus noise due to the presence of 
other associations in A. 

In general, we will wish to couple many pairs o f  traces by way of  our  
projection system. Let us assume we have a set o f  Kpai rs  o f  traces 

[(L, ~ ) ;  (L, 02) ; . . .  ; (fx, 0~)1, 
that  we wish to couple, that  is, if we present pattern of  activity fk  to the 
set o f  neurons ~, we wish the set o f  neurons, fl, to  show a pattern o f  
activity "close to"  9k" Let us first try to construct a matrix A which is 
somehow optimal and, second, calculate just how accurately the projection 
system reconstructs 9k at/3 when fk is presented at c~. 

The first problem is considered here in a slightly different manner  
than in Ref. 3. The second problem is considered later. 

We will assume that  we code the incoming trace, f ,  according to a well 
defined set o f  rules, generating a vector h ( f ) .  We assume h ( f )  is a reason- 
able func t ion- -nonzero ,  continuous.  Since [fs] are uncorrelated, [h(fj)] will 
be uncorrelated. Since we have assumed that  synaptic increments or 
decrements due to different traces add together, we can write for the 
activity of  a single element in/3 w h e n f i s  impressed on ~, 

g(i)  = f " Ej-h(f~). 

Let us assume that  a trace corresponding to f is present, that  is, f has 
appeared to  the system and the coding of  f ,  9 ( f )  is represented in the 
synapses. Then 

9 ( 0  = f "  h ( f )  + f . Ejh(fj). 
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Remembering that h(fj) are vectors, we see the second term on the average 
over allowable sets of  traces is a function of the average length of h(fj) 
since the f / a r e  uncorrelated. We will assume an optimal coding, h( f )  is 
one which on the average maximizes the first term while keeping the 
second term as small as possible. The geometry of the dot product indicates 
that this maximum is obtained w h e n f a n d  h( f )  point in the same direction, 
that is 

h(f  ) = cf, 
where c is a constant. 

Let us point out the implications of this simple result. Many models of  
long term memory assume that permanent changes in synaptic weight are 
made when the trace is laid down [12]. We will show that if, when an 
association is learned by a set of  neurons projecting to another set of  neurons, 
synaptic weight is changed by an amount proportional to the product of  
activity in the presynaptic neuron and of  activity in the postsynaptic neuron, a 
memory formed of  interacting traces is generated which (1) is optimal in the 
sense just considered and (2) can be shown to effectively recognize and assoc- 
iate traces. It is thus possible to generate a psychologically global memory 
system which is formed by physiologically local changes produced accord- 
ing to simple local rules, requiring the synapse to be affected only by the 
product of  pre- and postsynaptic activities. Note that this does not 
correspond to a simple strengthening-by-use learning change, although 
synaptic change dependent only on the activity of  the presynaptic cells is 
capable of generating a simple recognition memory model of an interactive 
type [3]. 

R E C O G N I T I O N  

We will first consider the problem of recognition in this model where 
recognition is defined as the ability to state, with some calculatable degree 
of certainty, whether or not a trace presented to ~ has been presented to 
the system before. For this calculation we will assume that previous 

A f =  f * (no ise )  

FIG. 3. The general scheme for recognition by self-association. Presentation of trace 

f-to set of neurons ~ gives rise to trace f a t  set of neurons 8, plus noise due to other 
stored associations in .4. 
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storage implies that the trace is associated with itself, that is, presentation 
of the trace to c~ gives rise to the trace in fl, thus 

f=Af, 
(see Fig. 3). This may seem like an artificial definition if ~ and fl are 
assumed to be two distinct sets of neurons, but if we were to consider a 
system, common in cortex, where a set of neurons projects to itself, we 
see that this scheme for recognition arises naturally. 

We assume we have K pairs of associated traces stored in our system 
according to the rule 

AkJCk ~--- gk, 

where Ak is the connectivity matrix generated when only (fk, gk) are 
associated by the system. Then we form the sum 

k=K 
A =  ~ A  k- 

k = l  

We assume a tracefo is presented whose connectivity matrix may be present 
in A. 

We wish to calculate a statistic which will let us decide whether (fo,fo) is 
present or absent from the associations stored in A. A reasonable kind of 
statistic to use, since it is exceptionally easy to calculate with strictly local 
interactions, and which is also the optimal linear filter is the "matched 
filter" given in this case by 

v = Afo . jo .  

We will now proceed to calculate the part  of  V due to the presence of 
(fo, fo) and the amount  due to the noise generated by the other stored 
associations. We will use as our parameter of interest the output signal 
to noise ratio [(S/N)o] defined as is usual by 

(S/N)o = (output due to signal)2/(mean square output due to noise). 

We assume M neurons in :~ project to each neuron in ft. We further assume 
diagonal elements of the matrix are zero. To assume otherwise for the 
recognition problem would lead to trouble since self-associations will 
always give rise to positive diagonal elements. For now we will assume 
that the correlation between elements in a trace and between traces is zero. 

By our optimal coding scheme we know that nonzero elements of the 
elementary matrix coupling two traces must be proportional to a constant 
times the value of the input to ~, fa, thus for the association (fk, 0k) we 
obtain the following representation: 

] 
A k = c  !gk(2)f(k2' [ 

! 9k(Ni)~')J . 
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Here  we have assumed tha t  M is large enough so that  the normal iz ing  
cons tant  for  each element  can be assumed to be the same. (This is equi-  
valent  to assuming tha t  the t race power  is approx imate ly  the same for 
every g roup  o f  neurons  in ~ that  projects  to  a single neuron in ft.) The 
f(~) are  row vectors defined so that  f~)(j) = 0 if  neuron j in ~ does not  
connect  with neuron i in fl and  

f(kl)(J) = fk(J ), 
i f  neuron  ( j)  in ~ is connected  to neuron (i) in ft. We can easily calculate  
the normal iz ing  cons tant  so tha t  for  K pairs  o f  associations.  

k=K 
A =  ~ A k ,  

k = l  

-gk(l)f(kl) 1 
N k ~  .2xz(21 

- -  gk( )Jk 
A i P k = i  ~k(gi)(N)l " 

We will assume tha t  K is sufficiently large so that  we can make  our  
r a n d o m  var iable  approx ima t ion .  We cart see tha t  individual  terms of  this 
mat r ix  can be app rox ima ted  by  the sum of  K of  the  p roduc ts  of  two 
uncorre la ted  r a n d o m  variables o f  mean  zero and  var iance PIN. Thus, 
var iance o f  an e lement  o f  A k averaged over  sets o f  a l lowable  t races is 

EU'(i)2f (j) 2] = E[f  (i)2]E[f (j) 2] = p2/N2. 

K of  these e lementary  connect ivi ty  matr ices  go to  form A with 

var(al i)  = KPZ/N 2. 

We can now form the (S/N)o for  recogni t ion.  We will assume we have 
K + 1 pairs  o f  associa ted  traces s tored in A. We present  a t race fk which 
is assumed to be ident ical  to  a s tored  self-associat ion.  Then 

(Akf~" fk) 2 
(S/N)o = 

E{[(A-Ak)fk"  fk]2) ' 

where the average is to  be taken  a l lowable  sets o f  traces. Then, 
p2 

(S/N)o = E{[(A_Ak)fk .  fk]2 }. 

We now evaluate  

E{[(A --  Ak)fk .f~]2}. 

We know tha t  (14 - Ak) is a ma t r ix  composed  of  elements ei ther zero or  
r a n d o m  variables app rox ima ted  above.  W e  have the useful formula ,  
i f  X is a r a n d o m  var iable  

var (cX)  = c 2 var  X. (1) 
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Then the vector approximating (A - Ak)fk is given by a set of random 
variables of  mean zero with 

var[(A - Ak)fk(j)] = (MP/N)(Kp2/N 2) = (KMp3/N3). 

This vector is multiplied by a constant MP/N. Then 

i ~ N  i = N  

var[(A--Ak)fk " fk] = ~ f ( i )X  = var X ~ f ( i )X  = (KMP4)/N 3. 
i = 1  i = 1  

And for the (S/N)o we find, squaring the normalizing constant according 
to Eq. 1 

p2 

(S/N) o (N2/Mzp2)(KMP4/N3) MN/K. 

This result should now be discussed. Let us first note that this result is 
consistent with those obtained in previous papers, in particular, it shares 
with them the important property that an interactive memory works 
better as it gets larger, and, in this case, more highly interconnected. This 
finding is suggestive since it is known that in mammals the amount of 
cortex associated with a function appears to be determined by the relative 
importance of the function in the animal's behavior. Two examples are 
given by Thompson (Ref. 32, p. 317). First, he notes that anatomical 
studies indicate that in the dog, a relatively small amount  of  cortical tissue 
is devoted to representation of forepaw. In the racoon, which makes 
extensive use of its forepaws, there is a far larger amount of cortex devoted 
to forepaw representation. Second, and perhaps the best known example 
of  this, is the grotesque little man representing the relative size of parts 
of  motor  cortex (determined by noting response to electrical stimulation) 
in humans (Ref. 32, p. 318). He has huge fingers and face and relatively 
tiny body and feet. Also, the simple increase in size of  the human brain 
during evolution suggests the presence of a significant mass effect where 
the cortex appears to work better (generating a selective advantage 
presumably due to more complex or appropriate behavior) as it gets 
larger (Ref. 22, p. 634). 

Second, let us point out that the recognition model postulated here, 
where a self-association is assumed to be stored, is also capable of  recogniz- 
ing temporal sequences (Fig. 4). If  we assume that there is a significant 
delay between the arrival of  a pattern of activity f at ~ and the generation 
of pattern of activity j at/3, we can see that if the input pattern changes, 
say, from f to 0 during this time delay, the formal scheme for recognition 
of the sequence and for recognizing a self-association are identical, giving 
rise to identical (S/N)o. (Systems with long conduction times (20-200 msec) 
are characteristic of  cortex.) 
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Third,  let us briefly try to jus t i fy  the choice o f  a matched filter recogni-  
t ion scheme. Al though  it has the max imum (S/N)o of  any simple filter and  
requires  only local opera t ions  to  form, this, o f  course,  is no guarantee  that  
it  is used by the nervous system. The presence o f  a matched  filter would 
have some impl icat ions .  

~ f  

D w 

fi lter output = Af- f  

f i l ter  output=Af ' .g 

time de lay=~ t 

FIG. 4. A system recognizing traces by self-association also allows recognition of 
temporal sequences. When trace f i s  impressed on set of neurons ~ it may give rise to 
output f(plus noise) if the self-association ( f , f )  has been stored in A. The filter output 
Af.findicates whether or not the self-association ( f , f )  was stored. If we assume that 
the connection between ~ and fl requires a time delay, At, then if the input to the system, 
f, changes to g- during the same period that the association Afis being generated at/3, 
the filter output is identical to that for recognition. 

A simple matched  filter (a var iant  o f  a template  match ing  scheme) runs 
in to  the p rob lem of  the so-called perceptual  invariants .  The p rob lem can 
be avoided  by assuming that  s torage takes place after  invar iant  t rans-  
fo rmat ions  have occurred.  However ,  even a simple template  scheme is 
more  realistic than  it might  seem at first. In  the visual system, it is clear 
that  matched  filter detect ion o f  a t race that  still retains a good  deal o f  
t opograph ic  organiza t ion  is not  ro ta t ion  invariant .  A l though  some li tera- 
ture on visual pa t t e rn  recogni t ion makes  the assumpt ion  that  h u m a n  
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pattern recognition is largely rotation invariant, this is not the case, as 
sensory psychologists have known since the last century [18]. (A simple 
experiment will demonstrate the effect: it is very difficult to recognize 
even familiar faces if the observer's head is tilted 45°.) Relatively little 
quantitative work has been done on this effect. Dearborn (1899, described 
in Ref. 18) required his subjects to detect repeated presentations of  forms 
displayed with various degrees of rotation. Dearborn reported that cards 
repeated in their original orientation were recognized 70 % of the time 
while forms rotated by 9 ° were recognized only 43 ~o of the time. 

The matched filter is translation invariant if even elementary centering 
systems are permitted, as head or eye movements in vision. It is pertinent 
to point out that animals and humans have an extensive repertoire of 
orienting and gaze directing behaviors. Thus a snake, with an eye with a 
slit pupil, can be seen to keep its pupil opening vertical, preserving a 
constant orientation of  the retinal image, no matter what the angle of  the 
snake's body. Size invariance is a more difficult problem. Simple schemes 
have been proposed (Ref. 6, p. 110) which preserve size invariance over 
a limited range in ways which are compatible with a matched filter detection 
system. It  is known [31] that brain damage which leaves a large central 
scotoma ("blind spot") does not interfere with recognition of figures, 
such as a large triangle, whose contours ring the scotoma, a result which 
might be expected from a matched filter. In any case, there often appears 
to be an optimal size of  retinal image for many complex items. Thus the 
size of  type will unconsciously determine the distance at which printed 
matter will be held, both very large and very small type being "hard  to 
read". In vision, a complex system is present to give an output which is 
directly related to size invariance. 

A M O R E  COMPLEX SYSTEM 

More detailed calculations are possible on the model. The most 
interesting involve associations between unrelated traces. In this section 
an example of such a system will be considered. 

Assuming that the trace, ~, associated with f,  is a trace that can be 
recognized by itself allows us to use a recognition and an association 
system together to improve the (S/N)o. Figure 5 shows such a system. 
We assume that K A traces are stored in the synapses connecting ~ and fl 
and that KB traces are stored in the recognition system attached to ft. 
We assume that ~ and fl each have N neurons and that all stored traces 
have power P. A is the connectivity matrix associated with connections 
between e and fl; B is the connectivity matrix representing the recognition 
system associated with ft. 

15 
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BA~" 
FIG. 5. A more complex system allows the reconstruction of output traces un- 

correlated with the input traces. It combines a projection system A, coupled with a 
projection system which couples/3 with itself. 

We will first calculate the equivalent of the recognition ( S / N ) o  for this 
system and then show how this result can be generalized to partially 
reconstruct the associated trace. 

We wish to know whether a trace f presented to 7 generates a trace, 
~7, which is one of the traces recognized by the recognition system. 

For these calculations we will introduce the notation ffa to indicate the 
noise added to the associated trace • due to the presence of the other 
stored associations, and ~B to represent the added noise produced by the 
recognition system, thus, 

A / = O  + ~A, B O = Y  + ~B. 
Since we only have noisy information about 9, we form our statistic 
(equivalent to the recognition statistic discussed previously when A = L 
the matrix with all diagonal elements equal to one) as 

V =  A f .  B A f .  

Then 

A/ .  BAy = (0 + ~A) " (BO + B~A) 
= (9 + ha)" (9 + nB + Bna) 
"= O " g + g " nB + g " Bna  + g " na + na " nB + na " BnA. 

We assume as before that traces are uncorrelated, trace elements are 
uncorrelated and the mean of elements in a trace is zero. We will sketch 
the calculation of these quantities, averaged over sets of allowable traces. 

We wish to calculate the variance of J ' ~B .  In the calculation in the 
previous section we calculated ( S / N ) o  for recognition, thus 

~ ' B j  = 9 " 9  + 9 " n B  = P  + 9 " n B .  

We found 
( S / N ) o  = ( j  " O)Z/var(O • ~B) = MB N/ KB .  

Solving 
var(O. ~/~) = ( K B P 2 ) / ( M n N ) .  
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Similarly, 

var(O" ~A) = (KAp2)/ (M AN) • 

The term var0ia • fiB) is also easy to calculate. We can show that the power 

PnA = nA' t lA = (KAP)/Ma, 

P,,o = ne'ne = (KBP)/Me. 

Then we see that since the variance of an element of ~a = KAP/MaN 
and of ~e = KeP/MBN and there are N elements, 

var(~A "he) = (KaKBP2)/(MaMeN) • 

We must go to the details of matrix B for calculation of the variance of 
the last two terms. We can approximate elements of B by random variables 
with variance Kep2/N2; nA is approximated by elements with variance 
KAP/MaN. Variance of the product vector is given by a vector with ele- 
ments with variance 

(N/MBP)2Me(Kep2/N2)(KAP/M A N) = (KAKeP/M AMBN). 

The first term in the above expression arises from the normalizing constant 
which multiplies B and which appears as the square in the variance. 

We see that 
var(O" BnA) = (KAKBP2)/(M AMBN) 

var(~A. B~A) = (K]KBP2)/(M]MeN). 

Now we can find (SIN)o: 
p2 

(S/N)o = KBp2 KAKBP 2 Kap2 KAKep2 d K  a ~2 KBp2 

Me T + M~Me~-~ + ~AN + MAMBN + \ ~ J  MeN 

N 

(KB/Me)(Ka/M A + 1) 2 + KA/MA" 

If  we assume K a = KB = K; MA = Me = M as a simplifying approxi- 
mation, then 

MN 
( S / N ) o  = K[(K/M + 1) 2 + 1 ]  

If  many traces are stored (K/M is large) 

(S/N)o = M3N/K 3. 

This result would signify that (S/N)o would drop off rapidly as K became 
very large, but indicates that there is still a linear dependence of (S/N)o 
on N. However, the (S/N)o is very dependent on M, indicating that a 
highly interconnected system should work far better than a weakly 
interconnected system. 

This (S/N)o is related to the question as to whether a trace presented to 
the system has an associated trace present in the system but says nothing 
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about the details of the associated trace, a result of  more interest. In 
general we would wish to extract as much information as possible from 
the association, in particular, we wish to have an idea of the structure of 
the associated trace--enough detail to be able to use it in further processing 
in the nervous system. 

If  we have N elements, a good strategy to recover information about 
the associated trace is to process the output of  groups of elements, in- 
creasing or decreasing the number of elements in a group as needed to 
effect a compromise between amount of  recovered detail and noise added 
by the memory. 

As an example of this approach, we can use the formula just derived 
in a grouping scheme. We will assume that we are most interested in 
recovering the magnitude of  the sum of squares of the values taken by 
elements. I f  we take V, 

v = A f .  BAr, 

and note that the dot product can be taken over groups of  R elements in 
fl, we see that for a group of R elements the (S/N)o is given by 

R 

(S/N)o = (K~/MB)(KA/M A + 1) 2 + KA/MA" 

(This result holds if 9 "g over the R elements has the average value, 

E(O. ~) = RP/N. 

The (S/N)o for a given region depends on the power of~ • .~ in the region.) 
We see from the above that V will be an estimate of the sum of squares 

of  the trace summed over the R chosen elements. By increasing R we 
obtain the intuitive conclusion that we can increase the (S/N)o while 
simultaneously losing detail on the level of single elements. 

It should be noted that a system like this apparently exists in the retina 
where the size of the spatio-temporal light intergrating area can be 
increased or decreased depending on the average light intensity, sacrificing 
acuity for detectability in low light and attaining very high acuity in high 
light intensities (Ref. 8, chaps. IV, V, VI; Ref. 4). 

By grouping elements, the (S/N)o of an average output can be varied 
over a range 

1 
~< (S/N)o ~< 

(KB/M~)(KA/M3 + I) + KA/M a 

N 

(KB/MB)(KA/MA + 1) + KA/MA" 

If  we assume that groups of neurons will be chosen spatially close to each 
other, we see that by assuming even weak topographic organization of the 
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neurons involved, this will decrease the high spatial frequency response 
of  the recovered associated trace while the low frequency outline will be 
more stable. Detail will be lost but major  structure will be preserved. 
This is in accord with c o m m o n  sense. 

S E L E C T I V I T Y  

An  important  problem for a model where traces can easily be confused 
is the question of  selectivity, that  is, how "close" must a trace be to the 
stored trace to be recognized. 

We can do some simple geometrical calculations to get an insight into 
this question. We have assumed all traces have power P, that  is, they are 
vectors with tips lying on an N-dimensional hypersphere of  radius P÷ 
(Fig. 6). 

/xf  
v 

FIG. 6. A trace f i s  perturbed by a vector A f, generating a new trace f ' .  Both fiand 
f '  have the same power. 

Let us consider f p e r t u r b e d  by a vector A l so  that 

f + A f =  - "  f , f ' f = f  . f '  = p .  
Considering a simple recognition system with only one stored trace, f, if 
we present our  per turbed vector f ' ,  then 

A I '  . f '  = (Af + A A f )  . f '  
= (AI + A a I ) .  ( f  + ~ f )  
= P + f .  A f + f .  A k f +  AA f .  Af. 



214 JAMES A. ANDERSON 

We see A A f  can be calculated if we assume M is large enough so that for 
all (j, k) 

f ( i ) .  Af  = f~k). Af  = (M/N) ( f  . A?), 

is an adequate approximation. Then 

A A f  = (N/MP)(M/N)( f .  Af)f ,  
and 

Similarly, 

A A I . I =  I .  AL 

Aaf.  Af = (f.  Af)~/P. 
By geometry (Fig. 6) we see 

f "  ' V  = p ( c o s  0 - 1). 

I f  we form a ratio of filter output as a function of 0 over filter output 
when 0 = 0, where 0 is the angle b e t w e e n f a n d f ' ,  then, 

(A f '  . f ' ) / ( A f . f )  = cos 2 0. 

We wish to find the angle 0 at which the output of the filter is reduced by 
half; we see 0 = 45 °. This corresponds to the half-power point of  engineer- 
ing filter theory. 

We now ask what are the chances of  a random trace falling into the 
region where the filter output is greater than half of  its maximum value. 
Restated, this is the ratio of  the surface content of the N-dimensional 
hypersphere within 45 ° of  a given trace to the surface content of  the 
N-dimensional hypersphere [30]. We can calculate this quantity by observ- 
ing we can establish a recursion formula, when SN is the surface-content of  
an N-dimensional hypersphere and VN is the volume-content of  an N- 
dimensional hypersphere and when R is the radius, 

I?  SN = 4 VN_zR dO. 

By a similar argument, if SCN is the surface-content of the hypersphere 
contained in a cone of base angle 0 and VCt~ is the volume content of  such 
a cone (assuming the cone extends in positive and negative directions, 
like an hourglass) 

S o SCN = 4 VCN-2 RdO. 
0 

Thus the desired ratio is given, for N elements in the vector by 

I ° 4RVCN_2 dO 
SCN/S~ = o = (20/~)(VCN-2/VN-2). 

4R VN- z dO 
0 
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If  N is even 

and if N is odd, 

(scN/&) = ( 2 o / r c W  2, 
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(SCN/&.) = ( 2 0 / z )  (N÷ 1),'2 

When 0 = 45% (20/z) = ½. This quar~tity becomes extremely small when 
N is large. Thus we see that selectivity as well as (S/N)o increases as N 
increases. 

C O R T I C A L  M O D E L  

The preceding discussion suggests a simple cortical model which 
would be capable of generating an interactive memory. The model will 
be sketched here. 

Cortex is similar in histological structure over much of its extent. The 
most frequently occurring kind of cel l --up to 80 % of neurons in rabbit  
cortex [16]--are variants of what are called "pyramidal  cells" with 
characteristic pyramid-shaped cell bodies and dendrites perpendicular to 
the cortical surface, extending almost to it, and then branching extensively 
parallel and close to the surface. These cells show rich synaptic contacts 
on all parts of the dendrites and have an array of"spines"  which apparerttly 
correspond to synaptic contacts on the dendrites, although not all synapses 
are associated with spines. These cells also show extensive collateral 
branches of their axons, often projecting both intra- and extracortically. 
It is hard to estimate the number of  different axons synapsing on pyramidal 
cells. Measurements quoted by Brodal (Ref. 5, p. 658) indicate that in 
monkey as many as 60,000 synapses are found on a motor area neuron, 
in visual cortex, about 7,000. In any case, several thousand cells may 
synapse on a single pyramidal cell. Origins of  these synapses differ: some 
are sensory afferents, others intracortical fibers of various types--callosal, 
short projections, long projections. Much is known about the details of 
interconnection, for this brief discussion we will merely assert that the 
cortex is very highly interconnected. 

Most electrophysiological recordings from cortex have been made from 
pyramidal cells, simply because they are the largest and most numerous 
cells present. This data suggests that cells behave in many respects as 
unique individuals, each cell taking its particular sample of  the surrounding 
afferent inputs. Since afferents are organized topographically in some cases 
(vision, for example) this gives common features to neighboring cells, but 
when cells are investigated in detail, each cell appears different from its 
neighbors in its particular blend of properties. Creutzfeldt and lto [10] and 
Creutzfeldt [9] found that primary visual cortical cells appeared to receive 
large inputs f rom only a few lateral gerticulate fibers (2 to 4). They 
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suggested that the variety of forms of receptive field displayed by primary 
visual cortex cells could be explained by the possible permutations of the 
types of lateral geniculate cells. Goldstein et al. [17] found that auditory 
cortex is weakly organized tonotopically with nearby cells showing quite 
different tuning curves. Single units in primary auditory cortex responded 
in an "individualistic and variegated" manner. Hubel and Wiesel [19] 
suggested that in monkey visual cortex, many overlapping mosaics of  
sensory parameters are present, the sample received by a single cell 
depending on the afferents in its particular area. 

The viewpoint that cortical cells respond as individuals finds con- 
firmation in a paper by Noda and Adey [25]. They recorded single units 
chronically from cat association cortex (parietal cortex). In over 70 cases 
they recorded two units with the same electrode. They separated and 
analyzed these units. They found that when the animal was alert and 
awake, the cells, spatially close together, were uncorrelated in their 
discharge. This was true as well when the animal was in REM sleep, 
presumably a time of intense subjective experience. When the animal was 
awake but drowsy, there was a weak correlation between cells and when 
the animals were in deep sleep, cell discharges were highly correlated. 

Let us now assume that we can identify the "traces" discussed earlier 
with patterns of increased or decreased pyramidal cell discharge in a given 
cortical area. 

We assumed in the mathematical model that elements of a single trace 
were urtcorrelated. The Noda and Adey findings [25] lend direct support 
to this assumption. Observations on EEG suggest a similar conclusion 
more indirectly. The generators apparently giving rise to the EEG tend 
to desynchronize (i.e. the resulting EEG amplitude distribution approaches 
a normal distribution more closely) during REM sleep and the awake state 
than in deep sleep [2]. This evidence indicates that during times when 
memory may be presumed to be functioning (alert, awake state and dream 
state) cortical elements tend to show uncorrelated activity. 

We must consider the interconnections of the cortex. I would like to 
suggest that there is some evidence indicating the presence of two major 
classes of  synapses significant for memory in the pyramidal cells. More 
probably, there may be a spectrum of types of synapses with the classes 
to be described forming two ends of a spectrum, but the analysis is not 
affected by assuming two discrete classes instead of a spectrum. 

First, there is the familiar type of synapse, with relatively large PSPs 
with relatively short rise times (1.5-10 msec). This type of synapse would 
be characteristic of incoming sensory afferents or strong intracortical 
projection systems. The work of Rail [27] suggests that PSPs can be 
classified on the basis of shape as to their electrical distance from the cell 
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body, since distant synapses will give slowly rising long PSPs due to the 
cable properties of the dendrites. Closer synapses will give more rapidly 
rising and falling PSPs, other properties of the PSPs being identical. Thus 
the first system would consist primarily of synapses close to the cell body. 

However, we have noted that many thousand synapses occur on 
pyramidal cells. Since there are generally only a few clearly recognizable 
PSPs [11], one might wonder what the other synapses are doing, 

lntracellular recordings from cortical neurons generally show spon- 
taneous fluctuations of the membrane potential [1]. Although spontaneous 
PSPs are often present, this activity usually appears superimposed on 
some other fluctuating activity. Elul has determined the frequency spec- 
trum of neuronal intracellular activity and finds it to have a frequency 
spectrum similar to that of the EEG with most energy in the frequencies 
below 10 cps. Although the distribution of amplitudes of the intracellular 
slow wave activity is not Gaussian (it is somewhat asymmetrical skewed 
in the positive direction) it is sufficiently close to the histogram expected 
of a Gaussian process to suggest some interesting modeling possibilities 
to see if the known asymmetries of the cortical neurons coupled with 
various input probability distributions might lead to the observed dis- 
tribution. 

In any case, I would like to suggest, as a second system, that this slow 
activity is generated by the activity of other synapses on the pyramidal 
cells. These synapses would be electrically remote from the cell body (on 
spines?) and would be severely low-pass filtered. Their influence would 
appear as a biasing of  cell activity where the activity of any given input 
would be unnoticeable but the action of many thousand weak, long time 
course inputs would be highly significant. Since we know that most cells 
in cortex are spontaneously active and are interconnected, assuming weak, 
extensive interconnections seems the most reasonable way of explaining 
these ubiquitous low frequency membrane fluctuations. 

Burns (Ref. 6, p. 64) has presented evidence which suggests that 
isolated cat forebrain acts very much like a highly interconnected random 
network. 

Another line of evidence indicates the presence of a system electrically 
remote from the cell body. Smith and Smith [29] in an extensive study of 
the statistics of spontaneous cell activity in cortex detected the presence of 
two distinct systems giving rise to the spontaneous activity of cortical cells 
in their preparation, the unanesthetized, isolated cat forebrain. They 
found that the statistics of spontaneous activity could be explained as the 
result of  two Poisson processes, one a "shower" of spikes following Poisson 
statistics and the other a process which "gated" the shower on and off 
at random intervals. They found when they passed a weak polarizing 
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current through the tip of  their electrode that the "gating" process was 
greatly affected but the average frequency of the Poisson shower was not 
changed drastically. Their interpretation of this is that the gating process 
is located near the cell body and the system giving rise to the shower is 
located farther from the soma. One might like to identify the "shower" 
process with the extensive weak interactions and the "gating" process 
with the first system but this is premature. Creutzfeldt, et al. [11] suggest 
in interpreting their stimulation data that "nonspecific" thalamic afferents 
are electrically more remote than "specific" thalamic afferents and that 
most inhibitory synapses appear to be located on the soma. Scheibel and 
Scheibel [28] suggest on anatomical grounds that nonspecific afferents 
exert a temporally diffuse biasing control on the pyramidal cell because 
of  the pattern and location of  the terminal arborization of these fibers. 

Let us consider how an idealized model which assumes a relatively 
strong, fast system, and a weak, slow, highly interconnected system might 
work to generate memory. We have assumed that in learning, as we 
assumed in the mathematical model, synaptic strength coupling two 
neurons in the weak system is increased or decreased proportional to the 
product of pre- and postsynaptic activity during a given per iod--when the 
two groups of  cells are "associating" the desired traces-- then we can see 
that the weak system will give rise to an interactive memory system of the 
type discussed in previous sections. 

The system would work roughly like this. A sensory input is impressed 
on the first group of neurons by the fast, strong system. A pattern of  
activity, corresponding to the input trace, is established in the first group 
of neurons. This pattern then "filters through" the weak system generating 
associations in a second group of  neurons by the mechanisms discussed 
in the earlier sections of this paper. These associations can interact with 
the input trace to produce the recognition statistics. The input trace might 
be made available to the second group of neurons by a connection between 
first and second groups by the fast strong system or by another means, 
such as a direct sensory projection. Or the trace produced by the weak 
system could then be processed further by the second group of neurons 
and its connections. 

A slow, weak system seems like a good candidate for memory since it 
would have the properties of  extensive interconnectio,n (high " M " )  and 
long time course (allowing complex temporal interactions at times con- 
sistent with the time courses of psychological events). 

A common pattern of response of cortical neurons is to show a brief 
burst of  activity when a new stimulus is presented and then to show a long 
inhibition. It might be possible that this inhibition serves to quiet the cells 
for the memory readout so that the diffuse and noisy memory trace trickling 



A NEURAL SYSTEM MODEL 219 

t h r o u g h  the  w e a k  sys tem w o u l d  n o t  be s u b m e r g e d  by a s t rong  sensory  

input .  
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