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Neural Network Models for Pattern
Recognition and Associative Memory

[his review outlines some fundamental neural network modules for :lpso-
ciative memory, pattern recognition, and category learning. Included are
discussions of the Mc'ulloch-Pitts neuron, perceptrons, adaline and mada-
line, back propagation. the learning matrix, linear associative memory, em-
bedding fields, instars and outstars. the avalanche, shunting competitive
networks. competitive learning, computational mapping by instar/outstar
families, adaptive resonance theory, the cognitron and neocognitron, and
simulated annealing. Adaptive filter formalism provides a unified notation.
Activation laws include additive and shunting equations. Learning laws in-
clude back-coupled error correction. Htebbian learning, and gated instar
and outstar equations. Also included are discussions of real-time and off-
line modeling, stable and unstable coding, supervised and unsupervised
learning, and self-organization.
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1. INTRODUCTION
Neural network analysis exists on many different levels. At the highest level (Figure
1) we study theories, architectures, and hierarchies for big problems such as early
vision, speech. arm movement, reinforcement, and cognition. Each architecture is
typically constructed from pieces, or modulhs, designed to solve parts of a bigger
problem. Trhese pieces might be used. for example. to associate pairs of patterns
with one another or to sort. a class of patterns into various categories. In turn. for
every such module there is a btwildering variety of examples, equations. simulations.
theorems, and implementations, studied tinder various conditions such as fast or
slow input presentation rates, supervised or unsupervised learning, and real-time
or off-line dynamics. These variations and their applications are now the subject of
hundreds of talks and papers each year. In this review I will focus on the middle
level, on some of the fundamental neural network modules that carry out associative
memory, pattern recognition. and category learning.

Even then this is a big subject. To help organize it further, I will trace the
historical development of the main ideas, grouped by theme rather than by strict
chronological order. But keep in mind that there is a much more complex history,
and many more contributors, than you will read about here. I refer you to the
Bibliography, in particular to the collection of articles in Neurocomputing: Foun-
datzons of Research, edited by James A. Anderson and Edward Rosenfeld (MIT
Press, Cambridge. 1988).

2. THE McCULLOCH-PITTS NEURON
We would probably all agree to begin with the McCulloch-Pitts neuron (Figure
2(a)). The McCulloch-Pitts model describes a neuron whose activity x. is the sum
of inputs that arrive via weighted pathways. The input from a particular pathway is
an incoming signal Si multiplied by the weight wij of that pathway. These weighted
inputs are summed independently. TIhe outgoing signal Sj = f(xj) is typically a
nonlinear function--binary, sigmoid, threshold-linear--of the activity x. in that
cell. The McCulloch-Pitts neuron can also have a bias term O,, which is formally
equivalent to the negative of a threshold of the outgoing signal function.

3. ADAPTIVE FILTER FORMALISM
A very convenient notation for describing the McCulloch-Pitts neuron is the adap-
tive filter. It is this notation that I will here use to translate models into
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FIGURE 1 Levels of neural network analysis.

a common language so that we can compare and contrast them. The elementary
adaptive filter depicted in Figure 2(b) has:

1. a level F, that registers an input pattern vector;

2. signals Si that pass through weighted pathways; and
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3. a second level F, whose activity pattern is here computed by the McCulloch-

Pitts function:
xj St= ,,+t . (1)

(a) McCULLOCH-PITTS NEURON
f(x )

Si~f~i) 1BINARY

-• =ZSw + e.

f ×

THRESHOLD - LINEAR

(b) ADAPTIVE FILTER

e j•. sI = f(x j)

F x
20

0Si Sf(xi)

F2

FIGURE 2 The
McCulloch-Pitts model (a)

S Sw - as a neuron, with typical
nonlinear signal functions;

I SI WIo COS( S, i INPUT (b) as an adaptive filter.
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The reason this formalism has proved so extraordinarily useful is that the F.
level of the adaptive filter romputes a pattern match, as in Eq. (2):

E Sid),, S iiStIIwiLcos S,wj). (2)

The independent sum of the weighted pathways in Eq. (2) equals the dot product of
the signal vector S times the weight vector wj. This term can be factored into the
"energy," the product of the lengths of S and wj, times a dimensionless measure
of "pattern match." the cosine of the angle between the two vectors. Suppose that
the weight vectors wj are normalized and the bias terms 9, are all equal. Then the
activity vector x across the second level describes the degree of match between the
signal vector S and the various weighted pathway vectors wj: the F2 node with the
greatest activity indicates the weight vector that forms the best match.

4. LOGICAL CALCULUS AND INVARIANT PATTERNS
The paper that first describes the McCulloch-Pitts model is entitled "A Logical Cal-
culus of the Ideas Immanent in Nervous Activity.""3 In that paper, McCulloch and
Pitts analyze the adaptive filter without adaptation. In their models, the weights
are constant. There is no learning. This i943 paper shows that given the linear
filter with an absolute inhibition term:

xj= Siwi, + Oj - [inhibition] (3)

and binary output signals, these networks can be configured to perform arbitrary
logical functions. And if you are looking for applications of neural network research,
you need only read the memoirs of John von Neumann 47 to see how heavily the
McCulloch-Pitts formalism influenced the development of present-day computer
architectures.

In a sense, however, McCulloch and Pitts were looking backwards, to the early
20th century mathematics of Principia Mathematica.43 A glance at the 1943 paper
shows that it is written in notation with which few of us are now familiar. (This is a
good example of revolutionary ideas being expressed in the language of a previous
era. As the revolution comes about a new language evolves, making the seminal
papers "hard to read.") McCulloch and Pitts also clearly looked forward toward
present-day neural network research. For example, a later paper lb euitled "'How
We Know Universals: The Perception of Auditory and Visual Forms.""3 There
they examine ideas in pattern recognition and. the computation of invariants. They
thus took their research program into a domain distinctly different from the earlier
analysis of formal network groupings and computation. Still, they considered only
models without learning.
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5. PERCEPTRONS AND BACK-COUPLED ERROR
CORRECTION
The McCulloch-Pitts papers were extraordinarily influential, and it was not long
before the next generation of researchers added learning and adaptation. One great
figure of the next decade was Frank Rosenblatt, whose name is tied with the percep-
tron niodel.a9 Actually, "'perceptron" refers to a large class of neural models. The
models that Rosenblatt himself developed and studied are numerous and varied:
see, for example, his book. Principles of Neurodynamzcs. 40

The core idea of the perceptron is the incorporation of learning into the McCul-
loch-Pitts neuron model. Figure 3 illustrates the main elements of the perceptron,
including, in Rosenblatt's terminology, the sensory unit (S); the association unit
(A), where the learning takes place: and the response unit (R).

One of the many perceptrons that Rosenblatt studied. one that remains im-
portant to the present day, is the back-coupled perceptron.40 Figure 4(a) illustrates
a simple version of the back-coupled perceptron model, with a feedforward adaptive

McCULLOCH-PITTS + LEARNING

f (xj)1

RESPONSE =f (X X.
UNIT (R) j j

=Xj a~w +0.

ASSOCIATION iUNIT (A) ___wi j F2

,a. dw,,
dt

SENSORY

UNIT (S) aF

FIGURE 3 Principal elements of a Rosenblatt perceptron: sensory unit (S), association
unit (A), and response unit (R).
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filter and binary output signal. Weights wij are adapted according to whether the
actual output Si matches a target output b1 imposed on the system. The actual
output vector is subtracted from the target output vector: their difference is defined
as the error: and that difference is then fed back to adjust the weights, according to
some probabilistic law. Rosenblatt called this process back-coupled error correction.
It was well known at the time that these two-level perceptrons could sort linearly
separable inputs, which can be separated by a hyperplane in vector space. into two
classes. Figure .1(b) shows back-coupled error correction in more detail. In particular
the error 6j is fed back to every one of the weights converging on the jth node.

6. ADALINE AND MADALINE
Research in the 1960s did not stop with these two-level perceptrons, but contin-
ued on to multiple-level perceptrons, as indicated below. But first let us consider
another development that took place shortly after Rosenblatt's perceptron formu-
lations. This is the set of models used by Bernard Widrow and his colleagues.
especially the adallne and madaline perceptrons. The adaline model has just one
neuron in the F, level in Fr'gure 5; the madaline, or many-adaline, model has any
number of neurons in that level. Figure 5 highlights the principal difference be-
tween the adaline/madaline and Rosenblatt's two-level feedforward perceptron: an
adaline/madaline model compares the analog output xj with the target output bj.
This comparison provides a more subtle index of error than a law that compares
the binary output with the target output. The error bj - xj = bj is fed hack to
adjust weights using a Rosenblatt back-coupled error correction rule:

d wij = ,,j a , (4)

at - (4)

This rule minimizes the mean squared error:

Z62 (5)

averaged over all inputs.5 0 It is therefore known as the least mean squared error
correction rule, or LMS.



10 Gail A. Carpenter

(a) BACK - COUPLED PERCEPTRON

TARGET OUTPUT ACTUAL OUTPUT
(BINARY)

b.

C -S C
ERROR CORRECTION
65. b -S i ivwll

BACK - COUPLED
ERROR CORRECTION

SYSTEM (PROBABILISTIC)

dw a, INPUT

dt

(b) BACK - COUPLED ERROR CORRECTION

xI

W, FIGURE 4 Back-coupled
error correction. (a) The
difference between the
target output and the
actual output is fed back
to adjust weights when
an error occurs. (b) All
weights w2i fanning in to
the jth node are adjusted

F1  in proportion to the error dj
at that node.
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ADALINE MADALINE
(1 NEURON) (MANY NEURONS)

A

TARGET OUTPUT ACTUAL OUTPUT
BINARY

b. * S1=f(x1 )

bl

ERO -x-=L-a.

I I i
b."j=b - W

1 :F

• • ai
LEAST MEAN SQUARED (LMS)

ERROR CORRECTION

MINIMIZES 1I
dw. I Ia iNPUT

dt _ _ _ _ _

FIGURE 5 The adaline and madaline perceptrons use the analog output .-,, rather
than the binary output ,•4, in the back-coupled error correction procedure.

Once again. adaline and niadaline provide uiany ,xaiiplehs of he, technoloic'lt
spin-of S already generated hy neural netw ork research Mo me (,f thie', are si m ma-

rized in an article b% Widrow and Winier"51 in a (Cotnpi;t 'r special issue on art itic ai
neural systerns. I'here lhie aiuthors describe adaptive r',lualizers and ,tdpilit , 1,C11.,
cancellation in anten.n•al . anid other engineering :application.,. all ,lireiIl
traceable to early neural network designs.
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7. MULTI-LEVEL PERCEPTRONS: EARLY BACK
PROPAGATION
We have so far been discussing only two-lhvel perceptrons. lHosenllaitt not cl-
tent, with these, also st udied inutiti-level perceptrons. Ls desc'ribed [ in I'rin up1s .' f

. Lcurodynainics. One particularly interest iig. section iii that bo)()k i.-,cI it h d '3ack-

Propagating Error ( 'orrection Procedures."he I, ack-j)ropagtatilln I,'lhi describt,
in that section anticipates the currently used I)ack-I)ropagat ion iioriel. which I,

also a multi-level prceptroti. In ('hapter 13. Rosenblatt lefiines a I ;ac'k-lPropa.t.,atlo
algorithm that ha.,, like most of his algorithnis. a probabilistic learning law: hoi
proves a theoreni about this system; and hit, carries out sinulations. Ilis chapter.
"Summary of Three-Layer Series-('oupled Systerns: (Capabilities and Deficiencies."
is equally revealing. [his chapter Inchudes a hard look at. what is lacking ,as well a,,
what, is good inl Rosenblatt's back-lpropagation algorit hilt. antd i puts t he lie to I lite
myth that all of these systenrs were looked at only through rose-colored glasses.

8. LATER BACK PROPAGATION
Let, us now tnove on to what has become one of the miost useful and well-studied
neural network algorithms, the model we now call back propagation. This systeni
was first developed by Paul Werbos,'1 as part of his Ph.D thesis "Beyond Re-
gression: New 'Fools for Prediction and Analysis in the Behavioral Sciences".: and
independently discovered by David Parker. 3' (See \Verbost') for ;a review of the
history of the development of back propagation.)

The most popular back-propagation examples carry out associative learning:
during training, a vector pattern a is associated with a vector pattern b: and sub-
sequently b is recalled upon presentation of a."' The back-propagation system is
trained under conditions of slow learning, with each pattern pair (a.b) presented
repeatedly during training. The basic elements of a typical back-propagation sys-
tem are the McCulloch-Pitts linear Alter with a sigmoid output signal function
and Rosenblatt back-coupled error correction. Figure 6 shows a block diagraml of
a back-propagation system that is a three-level perceptron. The input signal %e,(--
tor converges on the "hidden unit" F2 level after passing through the first set of
weighted pathways wi,. Signals ,j then fan out to the F3 level, which generates
the actual output of this feedforward system. A back-coupled error correct ion .vs-
tem then compares the actual output Sk with a target output bA. and feeds back
their difference to all the weights wijk converging on the kth node. In this pro-
cess the difference bk - Sk is also multiplied by another term, f'(xk). conlptlte~d
in a "differentiator" step. One function of this step is to ensure that the weights
remain in a bounded range: the shape of the sigmoid signal function itplies that
weights wjk will stop growing if the magnitude of the activity Xk becomes too large.
since then the derivative term f'(xk) goes to zero. Then there is a second way In
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which the error correction is fed back to the lower level. This is where the terin
"back propagation- enters: the weights U'jk in the feedforward pathways from [./-

to F• are now used in a second place. to tilter error information. rhis process is
called weight transport. In particular. all Ilie weights ?1',k in pathways fanning oit
from the jth f,' node areI transported for multiplication by the corresponding error

TARGET OUTPUT ACTUAL OUTPUT

b kO S k

DIFFERENTIATOR

bk f L sigmoid
"•~Sk:f( xk)

ERROR / k = . k + 0k

kf (xk)(bk- S3
5k /7•// Si

WEIGHT 
S fx sigmoid

TRANSPORT Jk DIFFERENTIATOR

ERROR x J HIDDEN UNITS
1 )Xj = 2" Si wij + 0.

L jk L. 2

S.

CORRECTION / LMSINPUTLEARNING RULE aI INU F,

FIGURE 6 Block diagram of a back-propagation algorithm for associative memory.
Weights in the three-level feedforward perceptron are adjusted according to back-
coupled error correction rules. Weight transport propagates error information in F_-to-F-3
pathways back to weights in F1 -to--/a pathways.
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terms 4: and the suni of all these products, times the bounding derivative terni
f'( Ik, is back-coupled to adjust all t he weights uti in pathways fanning in to the
jt h 1'-' node.

9. HEBBIAN LEARNING
I'his brings us close to the present in t his part icular Ifine of perceptron research. I

am now goini4 to step back and trace another major neural network Iherne t hat goes
inder the name 1t bbian learning. One sentence in a 1949 book. The Organization

of Bchaliaoro by Donald lHebb, is responsible for the phrase ilebbian learning:

"XWhen an axon of ceil A ,is near enoouig to excite a cell B and repeatedly
or persistently takes place in tiring it. soie growth process or metabolic

change takes place in one or both cells such that A's efficiency. as one of
the cells firing B. is increased.- 21

HEBBIAN LEARNING

B O x PRESYNAPTIC

F2 TWi CORRELATION

dw..

dst CU 11X

F, A X

FIGURE 7 Donald Hebb 24 provided a qualitative description of increases in path
strength that occur when cell A helps to fire cell B. In the adaptive filter formalism,
this hypothesis is often interprted as a weight change that occurs when a presynaptic
signal Si is correlated with a postsynaptic activity rj.
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Actually, 'Hlebbian learning" was not a new idea in 1949: it can be traced back
to Pavlov and earlier. But in the decade of McCulloch and Pitts. the formulation
of the idea in the above s¢enitence crystallized the notion in such a way that it
became widely influential in the emerging neural network field. Translated into a
differential equation (Figure 7). the llebbian rule computes a correlation between
the presynaptic signal S, an( the postsynaptic activity xj. with positive values of
the correlation term .', x, led h (ing to increases in the weight i,j.

The Hebbian learning thelie has since evolved in a number of directions. One
important development e'ntailed simply adding a passive decay term to the Ilebbian
correlation termli:

d w:,j_ . ' - (6)

dt

Other developments are described below. In all these rules, changes in the weight
Wi( depend upon a simple function of the presynaptic signal ?'j. the postsynaptic
activity xj, and the weight itself. as in Eq. (6). In contrast, back-coupled error
correction requires a term that niust be computed away from the target node and
then transmitted back to adjust the weight.

10. THE LEARNING MATRIX
Many of the models that followed the perceptron in the 1950s and 1960s can be
phrased in Hebbian lphis Mc( 'illlochl-Pitts) language. One of the earliest and most
important is the learning inatrix (Figure 8) developed by K. Steinbuch.i ` The
function of the learning matrix is to sort, or partition, a set of vector patterns
into categories. In the simple learning matrix illustrated in Figure 8(a), an input
pattern a is represented in the vertical wires. During learning a category for a is
represented in the horizontal wires of the crossbar: a is placed in category .1 when
the Jth component of the output vector b is set equal to 1. During such an input
presentation, the weight wij is adjusted upward by a fixed amount if ai 1 and
downward by the same amount if ai -. 0. Then during performance the weights a,,,
are held constant: and an input a is deeineu to be in category J if the weight vector
WJ = (WIJ.... WNyJ) is closer than any other weight. vector to a, according to some
measure of distance.

Recasting the crossbar learning matrix in the adaptive filter format, (Figure
8(b)) helps us to see that this simple model is the precursor of a fundamental
module widely used in present-day neural network modeling, namely compellz11c
learning. In particular, activity at the top level of the learning matrix corresponds
to a category representation. Setting activity xj equal to 1, while all other rj's
are set equal to 0. corresponds to the dynamics of a choice, or winner-lake-all.
neural network. Steinbuch's learning rule can also be translated into the tHebbian
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(a) INPUT VECTOR a

CATEGORY -I

VECTOR b --

(0..010.0) _ I w '

LEARNING . r.

b C0 1 J ) Aw W 0

(b) -b.

CATEGORY X CHOMEITIE
i d C. COMPETITIVEF LEARNING

2

S,

I .r

INP~r

F x1

dw
LEARNING d s

FIGURE 8 The learning

PERFORMANCE dw =matrix, for category learning.

(a) Cross-bar architecture for
dI electronic implementation.

S=,(b) The learning matrix
in adaptive filter notation.

CHOICE x I 1 jS f w s w, The learning matrix was a

I max is w precursor of the competitive

0 on' • learning paradigm.
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formalism, with weight adjustment during learning a joint function of a presynaptic
signal Si = (2ai - 1) and a postsynaptic signal xj = bj. (This rule is not strictly
Hebbian since weights can decrease as well as increase.) Then during performance.
weight changes are prevented: a new signal function Si = ai is chosen; and an F2
choice rule is imposed based, for example, on the (dot product measure illustrated
in Figure 9(b).

A model comparative analysis of the learning matrix and the madaline models
and their electronic implementations can be found in a paper by K. Steinbuch and
B. Widrow.45 This paper, entitled "A critical comparison of two kinds of adaptive
classification networks," carries out a side-by-side analysis of the learning matrix
and the madaline, tracing the two models' capabilities. similarities, and differences.

11. LINEAR ASSOCIATIVE MEMORY (LAM)
We will now move to a different line of research, namely the linear associative mem-
ory (LAM) models. Pioneering work on these models was done by J. Anderson,5

T. Kohonen,3 0 and K. Nakano. 36 Subsequently, many other linear associative mem-
ory models were developed and analyzed, for example by Kohonen and his collabo-
rators, who studied LAM's with iteratively computed weights that converge to the
Moore-Penrose pseudoinverse. 3" This latter system is optimal with respect to the
LMS error (5), and so is known as the optimal linear associative memory (OLAM)
model. Variations included networks with partial connectivity, probabilistic learning
laws, and nonlinear perturbations.

At the heart of all these variations is a very simple idea, namely that a set of
pattern pairs (a(P), b(P)) can be stored as a correlation weight matrix:

"= E . (7)
p (all patterns)

The LAM's have been an enduringly useful class of models because, in addition
to their great simplicity, they embody a sort of perfection. Namely, perfect recall
is achieved, provided the input vectors a(P) are mutually orthogonal. In this case,
during performance, presentation of the pattern a(P) yields an output vector x
proportional to b(P), as follows:

X =E a(p) . w j -- wa ij (" ') ( (q)b,

i q (8)
-- Sa i ai *b• .= - Z~a(P)a(q))b~q).

q i q

If, then, the vectors a(P) are mutually orthogonal, the last sum in Eq. (8) reduces
to a single term, with

Xi = IIa(P)I12b P)) (9)
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Thus the output vector x is directly proportional to the desired output vector. WP).
Finally, if we once again cast the LAM in the adaptive filter framework, we see that
it is a Hebbian learning model (Figure 9).

b.

OUTPUT exi
F2  __ __ Wi 1

a.

INPUT j_

a.

LEARNING dw..
(HEBBIAN) t = a x. = a.b.

dt

Each pair ( a , b (p) presented for 1 time unit:

w.. = a (P) b (P)
I j p I

PERFORMANCE x. = a.w..
J i I IJ

dw..
II-0

dt

FIGURE 9 A linear associative memory network, in adaptive filter/Hebbian learning
format.
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12. REAL-TIME MODELS AND EMBEDDING FIELDS
Most of the models we have so far discussed require external control of system dy-
namics. In the back- propagation model shown in Figure 6. for example, the initial
feedforward activation of the three-level perceptron is followed by error correction
steps that require either weight transport or reversing the direction of flow of acti-
vation. In the linear associative memory model in Figure 9. dynamics are altered as
the system moves from its learning mode to its performance mode. During learning,
activity xj at the output, level F, is set equal to the desired output bj. while tile in-
put 4;iuizwij coming to that. level from I', through the adaptive filter is suppressed.
During performance. in contrast, the dynamics are reversed: weight changes are
suppressed and the adaptive filter input determines Xj.

The phrase real tzme describes neural network models that require no exter-
nal control of system dynamics. ( Ical timc is alt.ernatively used to describe an%
system that is able to process inputs as fast as they arrive.) Differential equations
constitute the language of real-time models. A real-time model may or may not
have an external teaching input, like the vector b of the LAM model: and learn-
ing may or may not be shut down after a finite time interval. A typical real-time
model is illustrated in Figure 10. There, excitatory and inhibitory inputs could be
either internal or external Tb the model, but, if present. the influence of a signal is
not selectively ignored. Moreover. the learning rate c(t) might, say, be constant or
decay to 0 through time, but does not require algorithmic control. The dynamics of
performance are described by the same set of equations as the dynamics of learning.

Real-time modeling has characterized the work of Stephen Grossberg over the
past thirty years, work that in its early stages was called a theory of ernbcdding
fields."2 These early real-time models, as well as the more recent systems developed
by Grossberg and his colleagues at the Boston University Center for Adaptive
Systems, portray the inextricable linking of fast nodal activation and slow weight
adaptation. There is no externally imposed distinction between a learning mode
and a performance mode.

13. INSTARS AND OUTSTARS
Two key components of embedding field systems are the instar 17' 20 '46 and the
outstar.' Figure 11 illustrates the fan-in geometry of the instar and the fan-out
geometry of the outstar.

Instars often appear in systems designed to carry out adaptive coding, or
content-addressable memory (CAM). 3 ' For example, suppose that the incoming
weight vector (wli,... ,wN.j) approaches the incoming signal vector (S,,... SN)
while an input vector a is present at F,; and that the weight and signal vectors
are normalized. Then Eq. (2) implies that the filtered input Z, Siwij to the Jth
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ACTIVATION EQUATION (ADDITIVE MODEL)

dx. = + ~ excitatory ] -[inhibitory ]
dt inputs inputs

LEARNING EQUATION

dw..dtLL= E(t) F( S.,, x.,w..j)

dt '- Sw

X XI

FIGURE 10 Elements of a typical real-time model, with additive activation equations.

F2 node approaches its maximum value during learning. Subsequent presentation
of the same Fz input pattern a maximally activates the Jth F2 node; that is, the
"content addresses the memory," all other things being equal.

The outstar, which is dual to the instar, carries out spatial pattern learning.
For example, suppose that the outgoing weight vector (wJ I, .. , WJN) approaches
the F1 spatial activity pattern (Z 1, ... , ZN) while an input vector a is present. Then
subsequent activation of the Jth F2 node transmits to F1 the signal pattern (Sjwj 1 ,
... , SJWiN) = S,(wJI, ... , WJN), which is directly proportional to the prior F1
spatial activity pattern (zI,... XN), even though the input vector is now absent;
that is, the "memory addresses the content."

The upper instar and outstar in Figure 11 are examples of heteroassoclative
memories, where the field F1 of nodes indexed by i is disjoint from the field F2
of nodes indexed by j. In general, these fields can overlap. The important special
case in which the two fields coincide is called autoassociative memory, also shown
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in Figure 11. Powerful computational properties arise when neural network archi-
tectures are constructed from a combination of instars and outstars. We will later
see some of these designs.

INSTAR (FAN - IN) OUTSTAR (FAN - OUT)

ADAPTIVE CODING SPATIAL PATTERN LEARNING

CONTENT - ADDRESSABLE

MEMORY (CAM)

F I I

Si S j

001010i

a, ai

Sj SSI

si S.

xi x.

INDEX SETS
HETEROASSOCIATIVE: I n J = 0

1 n AUTOASSOCIATIVE: I = J
6 (INSTAR a OUTSTAR)

FIGURE 11 Heteroassociative and autoassociative instars and outstars, for adaptive
coding and spatial pattern learning.
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14. ADDITIVE AND SHUNTING ACTIVATION EQUATIONS
The outstar and the instar have been studied in great detail and with various
combinations of activation, or short-term memory, equations and learning, or long-
term memory, equations. O(ne activation equation, the addztUe model, is illustrated
in Figure 10. There. activity at a node is proportional to the difference between the
net excitatory input and the net. inhibitory input. Most of the models discussed so
far employ a version of the additive act ivat ion model. For example. the McCulloch-
Pitts activation equation (3) is the steady state of the additive equation ( 10):

lit = , + ±,, i ] - [inhibition+. (10)

Grossberg2 3 reviews a number of neural models that are versions of the additive
equation.

An important generalization of the additive model is the shunting model. In a
shunting network, excitatory inputs drive activity toward a finite maximum. while
inhibitory inputs drive activity toward a finite niiniinum, as in Eq. (11):

dxt - £+(A-x?) I: rexcitatory inputs] (B+ xi2 ) {inhibtr in ut] (i

In Eq. (11), activity xi remains in the bounded range (-B, A), and decays to the
resting level 0 in the absence of all inputs. In addition, shunting equations display
other crucial properties such as normalization and automatic gain control. Finally,
shunting network equations mirror the underlying physiology of single nerve cell
dynamics, as summarized by the Hodgkin-Huxley 27 equations:

dIVV- = _-V + (V•y, - V)TjVamn3 h - ( VK + V')gJKf. (12)
dit

In this single nerve cell model, durinZ depolarization, sodium ions entering across
the membrane drive the potential V toward the sodium equilibrium potential V.'?';
during repolarization, exiting potassium ions drive the potential toward the potas-
sium equilibrium potential -'VK; and in the balance the cell is restored to its resting
potential, which is here set equal to 0. In 1963 A. L. Hodgkin and A. F. Huxley
won the Nobel Prize for their development of this classic neural model.
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15. LEARNING EQUATIONS
A wide variety of learning laws for instars and outstars have also been studied. One
example is the Hebbian correlation + passive decay equation (6). T[here, the weight
wi computes a long-term weighted average of the product of presynaptic activity
Si and postsynaptic activity xj.

A typical learning law for instar coding is given by Eq. (13):

dwu, _ c(t)[Si -- wij]Xj. (13)

dt

Suppose, for example, that the .Jth F2 node is to represent a given category. Ac-
cording to Eq. (13), the weight vector (wiJ, WNJ) converges to the signal vector
(SI,. SN) when the Jth node is active: but that weight vector remains uiiih1aged
when a different category representation is active. The term xj thus buffers, or
gates, the weights wij against undesired changes, including memory loss due to
passive decay. On the other hand, a typical learning law for outstar pattern learn-
ing is given by Eq. (14):

dw 3 _ C(t)[Xi - WjJSj. (14)
_- dt

In Eq. (14), when the Jth F2 node is active the weight vector (wjl,..., wJN) con-
verges to the F, activity pattern vector (xi,.... xN). Again, a gating term buffers
weights against inappropriate changes. Note that the pair of learning laws described
by Eqs. (13) and (14) arc non-Hebbian. and are also non-symmetric. That is, Wij
is generally not equal to wji, unless the F, and F2 signal vectors S are identical to
the corresponding activity vectors x.

A series of theorems encompassing neural network pattern learning by systems
employing a large class of these and other activation and learning laws was proved
by Grossberg in the late 1960s and early 1970s. One set of results falls under the
heading outstar learning theorems. One of the most general of these theorems is
contained in an article entitled "Pattern Learning by Functional-Differential Neu-
ral Networks with Arbitrary Path Weights." 16 This is reprinted in Studies of Mind
and Brain,22 which also contains articles that introduce and analyse additive and
shunting !quations (10) and (11); learning with passive and gated memory decay
laws (6), (13), and (14); outstar and instar modules; and neural network architec-
tures constructed from these elements.
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FIGURE 12 The avalanche: a neural network capable of learning and performing an
arbitrary space-time pattern.

16. LEARNING SPACE-TIME PATTERNS: THE AVALANCHE
While most of the neural network models discussed in this article are designed
to learn spatial patterns, problems such as speech recognition and motor learning
require an understanding of space-time patterns as well. An early neural network
model, called the avalanche, is capable of learning and performinrg an arbitrary
space-time pattern."4 In essence, an avalanche is a series of outstars (Figure 12).
During learning, the outstar active at time t learns the spatial pattern x(t) gener-
ated by the input pattern vector a(t). It is useful to think of x(t) as the pattern
determining finger positions for a piano piece: the same field of cells is used over
and over, and the sequence ABC is not the same as CBA. Following learning, when
no input patterns are present, activation of the sequence of outstars reads-out, or
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"performs," the space-time pattern it had previously learned. In its minimal form.
this network can be realized as a single cell with many branches. Learning and per-
formance can also be supervised by a nonspecific GO signal. The GO signal may
terminate an action sequence at any time and otherwise modulate the performance
energy and velocity. In general, the order of activation of the outstars, as well as
the spatial patterns themselves, need to be learned. This can be accomplished us-
ing autoassociative networks, as in the theory of serial learning1 5 or adaptive signal
processing

25

17. ADAPTIVE CODING AND CATEGORY FORMATION
Let us now return to the theme of adaptive coding and category formation, intro-
duced earlier in our discussion of Steinbuch's learning matrix. As shown in Figure
8(b), the learning matrix can be recast in the adaptive filter formalism, with the
dynamics of the F 2 level defined in such a way that only one node is active at a
given time. The active node, or category representation, is selected by a "'teacher"
during learning. During performance the active node is selected according to which
weight vector forms the best match with the input vector. Now compare the learn-
ing matrix in Figure 8(b) with the instar in Figure 11. The pictures. or network
"anatomies," seem to indicate that the instar is identical to the learning matrix.
The difference between the two models lies in the dynamics, or network "physi-
ology." The fundamental characteristic ,,f the inst ,r th-v iztinguishes it from the
learning matrix and other early models is the constraint that instar dynamics occur
in real time. In particular, the instar filtered input S . wj influences xj at all times,
and is not artificially suppressed during learning. However, the desire to construct
a category learning system that can operate in real time immediately leads to many
questions. The most pressing one is: how can the categories be represented if the
dynamics are not imposed by an external agent? For the choice case, for example,
the internal system dynamics need to allow at most one F, node be active, even
though other nodes may continue te receive large inputs, either internally, via the
filter, or externally, via the vector b. Even when the category representation is
a distributed pattern, this representation is generally a compressed, or contrast-
enhanced, version of the highly distributed net pattern coming in to F2 from all
sources. This compression is, in fact, the step that carries out the process wherein
some or many items are grouped into a new unit, or category.
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FIGURE 13 An on-center/off-surround shunting competitive network. Qualitative
features of the signal function f'(xj ) determine the way in which the network transforms
the input vector I into the state vector x.

18. SHUNTING COMPETITIVE NETWORKS
Fortunately, there is a well-defined class of neural networks ideally suited to play the
role of the category representation field. This is the class of on-center/off-surround
shunting competitive networks. Figure 13 illustrates one such system. There, the
input vector I can be the sum of inputs from one or more sources and is, in general,
highly distributed. On-center here refers to the feedback process whereby a cell
sends net excitatory signals to itself and to its immediate neighbors; off-surround
refers to the complementary process whereby the same cell sends net inhibitory sig-
nals to its more distant neighbors. In a 1973 article entitled "Contour Enhancement,
Short-Term Memory, and Constancies in Reverberating Neural Networks," Gross-
berg carried out a mathematical characterization of the dynamics of various classes
of shunting competitive networks. In particular he classified the systems accord-
ing to the shape of the signal function f(z,). Depending upon whether this signal
function is linear, faster-than-linear, slower-than-linear, or sigmoid, the networks
are shown to quench or enhance low-amplitude noise, and to contrast-enhance or
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flatten the input pattern I in varying degrees. In particular. a faster-than-linear
signal function implements the choice network needed for many models of cate-
gory learning. A sigmoid signal function, on the other hand. suppresses noise and
contrast-enhances the input pattern, without necessarily going to the extreme of
concentrating all activity in one n1ode. Thus an on-center/off-surrotnd shunting
competitive network wilh a signmoid signal function is shown to be an ideal design
for a category learning syst en1 with distributed code representations. This paramwet-
ric analysis thus provided the foundation for constructing larger network architec-
tures that, use a compeiit ive network as a component with well-defined functional
properties.

19. COMPETITIVE LEARNING
A module of fundamental importance in recent neural network architectures is de-
scribed by the phrase competitive hcarning. This module brings the properties of
the into the real-time setting. The basic competitive learning architecture consists
of an instar filter, from a field I' to a field F2 , and a competitive neural network at
F2 (Figure 14). The comiletitive learning module can operate with or without an
external teaching signal b. and learned changes in the adaptive filter can proceed
indefinitely or cease after a finite time interval. If there is no teaching signal at, a
given time. then the net input vector to F2 is the sum of signals arriving via the
adaptive filter. Then, if the category representation network is designed to make a
choice, the node that automatically becomes active is the one whose weight vector
best matches the signal vector, as in Eq. (2). If there is a teaching signal, the cat-
egory representation decision still depends on past learning, but this is balanced
against the external signal b, which may or may not overrule the past in the con-
petition. In either case, an instar learning law such as Eq. (13) allows a chosen
category to encode aspects of the new F1 pattern in its learned representation.

20. COMPUTATIONAL MAPS
Investigators who have developed and analyzed the competitive learning paradigm
over the years include K. Steinbuch44 ; S. Grossbergl'7 19120 : C. von der Malsburg' 6 :
S.-I. Amari3 ; S.-I. Amari and A. Takeuchi4 ; E. Bienenstock, L. Cooper, and P.
Munro 6; D. Rumelhart and D. Zipser4 2 ; and many others. Moreover, these and
other investigators proceeded to embed the competitive learning module in higher-
order neural network systems. In particular, systems were designed to learn com-
putational maps, producing an output vector b in response to an input vector a.
The core of many of these computational map models is an instar-outstar system.
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INSTAR + CONTRAST ENHANCEMENT

F2
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F1

ai

FIGURE 14 The basic competitive learning module combines the instar pattern coding
system with a competitive network that contrast-enhances its filtered input.

Recognition of this common theme highlights the models' differences as well as their
similarities. An early self-organizing three-level instar-outstar computational map
model was described by Grossberg,' 7 who later replaced the instar portion of this
model with a competitive learning module.20 The self-organizing feature map32 and
the counter-propagation network26 are also examples of instar-outstar competitive
learning models.

The basic instar-outstar computational map system is depicted in Figure 15.
The first two levels, F1 and F2 , form a competitive learning system. Included are the
fan-in adaptive filter, contrast enhancement at the "hidden" level F2 , and a learn-
ing law for instar coding of the input patternsea. The top two levels then employ
a fan-out adaptive filter for outstar pattern learning of the vector b. This three-level
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FIGURE 15 A three-level, feedforward instar-outstar module for computational
mapping. The competitive learning module (F 1 and F2 ) is joined with an outstar-type
fan-out, for spatial pattern learning.

architecture allows, for example, two very different input patterns to map to the
same output pattern: each input pattern can @ctivate its own compressed represen-
tation at F2 , while each of these F2 representations can learn a common output
vector. In the extreme case where each input vector a activates its own F2 node
the system learns any desired output. The generality of this extreme case, which
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implements an arbitrary mapping from R m to R", is offset by its lack of general-
ization, or continuity, as well as by the fact that each learned pair (a,b) requires
its own F2 node. Distributed F, representations provide greater generalization and
efficiency, at a cost in complete a priori generality of the mapping.

21. INSTABILITY OF COMPUTATIONAL MAPS
The widespread use of instar-outstar families of computational maps attests to the
power of this basic neural network architecture. This power is, however, diminished
by the instability of feedforward systems: in general, recently learned patterns tend
to erode past learning. This instability arises from two sources. First, even if a
chosen category is the best match for a given input, that match may nevertheless
be a poor one, chosen only because all the others are even worse. Established codes
are thus vulnerable to recoding by "outliers." Second, learning laws such as Eq. (13)
imply that a weight vector tends toward a new vector that encodes the presently
active pattern, thereby weakening the trace of the past. Thus weight vectors can
eventually drift far from their original patterns, even if learning is very slow and
even if each individual input makes a good match with the past as recorded in the
weights.

The many existing variations on the three-level instar-outstar theme illustrate
some of the ways in which this family of models can be adapted to cope with the ba-
sic system's intrinsic instability. One stabilization technique causes learning to slow
or cease after an initial finite interval, but then a subsequent unexpected pattern
cannot be encoded, and instability could still creep in during the initial learning
phase. Another approach is to restrict the class of input patterns to a stable set.
This technique requires that the system can be sufficiently well analyzed to iden-
tify such a class, like the orthogonal inputs of the linear associative memory model
(Figure 9), and that all inputs can be confined to this class. An often successful
way to compensate for the instability of these systems is to slow the learning rate
to such an extent that learned pattermns are buffered against massive recoding by
any single input. Of course, then, each pattern needs to be presented very many
times for adequate learning to occur, a fact that was discussed, for example, by
Rosenblatt in his critique of back propagation.

22. ADAPTIVE RESONANCE THEORY (ART)
It was analysis of the instability of feedforward instar-outstar systems that led to
the introduction of adaptive resonance theory (ART)"1 and to the development
of the neural network systems ART 1 and ART 2.7,8 ART networks are designed,
in particular, to resolve the stability-plasticity dilemma: they are stable enough
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to preserve significant past learning, but nevertheless remain adaptable enough to
incorporate new information whenever it might appear.

The key idea of adaptive resonance theory is that the stability-plasticity dilem-
ma can be resolved by a system in which the three-level network of Figure 15 is
folded back on itself, identifying the top level (F 3 ) with the bottom level (F 1 ) of the
instar-outstar mapping system. Thus the minimal ART module includes a bottom-
up competitive learning system combined with a top-down outstar pattern learning
system. When an input a is presented to an ART network, system dynamics initially
follow the course of competitive learning (Figure I4), with bottom-up activation
leading to a contrast-enhanced category representation at F2 . In the absence of
other inputs to F2 , the active category is determined by past learning as encoded
in the adaptive weights in the bottom-up filter. But now, in contrast to feedforward
systems, signals are sent from F2 back down to F, via a top-down adaptive filter.
This feedback process allows the ART module to overcome both of the sources of
instability described in Section 21, as follows.

First, as in the competitive learning module, the category active at F2_ may
poorly match the pattern active at F1 . The ART system is designed to carry out a
matching process that asks the question: should this input really be in this category'?
If the answer is no, the selected category is quickly rendered inactive, before past
learning is disrupted by the outlier, and a search process ensues. This search process
employs an auxiliary orienting subsystem that is controlled by the dynamics of the
ART system itself. The orienting subsystem incorporates a dimensionless vigilance
parameter that establishes the criterion for deciding whether the match is a good
enough one for the input to be accepted as an exemplar of the chosen category.

Second, once an input is accepted and learning proceeds, the top-down filter
continues to play a different kind of stabilizing role. Namely, top-down signals that
represent the past learning meet the original input signals at F1 . Thus the F,
activity pattern is a function of the past as well as the present, and it is this blend
of the two, rather than the present input alone, that is learned by the weights in
both adaptive filters. This dynamic matching during learning leads to stable coding,
even with fast learning.

An example of the ART 1 class of minimal modules is illustrated in
Figure 16. In addition to the two'adaptive filters and the orienting subsystem.
Figure 16 depicts gain control processes that actively regulate learning. Theorems
have been proved to characterize the response of an ART 1 module to an arbitrary
sequence of binary input patterns.7 ART 2 systems were developed to self-organize
recognition categories for analog as well as binary input sequences. One principal
difference between the ART 1 and the ART 2 modules is shown in Figure 17. In
examples so far developed, the stability criterion for analog inputs has required a
three-layer feedback system within the F1 level: a bottom layer where input pat-
terns are read in; a top layer where filtered inputs from F2 are read in; and a middle
layer where the top and bottom patterns are brought together to form a matched
pattern that is then fed back to the top and bottom F1 layers.
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FIGURE 16 An ART 1 module for stable, self-organizing categorization of an arbitrary
sequence of binary input patterns.

23. ART FOR ASSOCIATIVE MEMORY
A minimal ART module is a category learning system that self-organizes a sequence
of input patterns into various recognition categories. It is not an associative mem-
ory system. However, like the competitive learning module in the 1970s, a minimal
ART module can be embedded in a larger system for associative memory. A sys-
tem such as an instar-outstar module (Figure 15) or a back-propagation algorithm
(Figure 6) directly pairs sequences of individual vectors (a,b) during learning. If
an ART system replaces levels F1 and F2 of the instar-outstar module, the asso-
ciative learning system becomes self-stabilizing. ART systems can also be used to
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FIGURE 17 Principal elements of an ART 2 module for stable, self-organizing
categorization of an arbitrary sequence of analog or binary input patterns. The F1 level
is a competitive network with three processing layers.

pair sequences of the categories self-organized by the input sequences (Figure 18).
Moreover, the symmetry of the architecture implies that pattern recall can occur
in either direction during performance. This scheme brings to the associative mem-
ory paradigm the code compression capabilities of the ART system, as well as its
stability properties.
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FIGURE 18 Two ART systems combined to form an associative memory architecture.

24. COGNITRON AND NEOCOGNITRON
In conclusion, we will consider two sets of models that are variations on the themes
previously described. The first class, developed by Kunihiko Fukushima, consists of
the cognitron 9 and the larger-scale neocognitron. 10 '1 ' This class of neural models
is distinguished by its capacity to carry out translation-invariant and size-invariant
pattern recognition. This is accomplished by redundantly coding elementary fea-
tures in various positions at one level; then cascading groups of features to the next
level; then groups of these groups; and so on. Learning can proceed with or without
a teacher. Locally the computations are a type of competitive learning that use
combinations of additive and shunting dynamics.
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25. SIMULATED ANNEALING
Finally, in addition to the probabilistic weight change laws which were a prominent
feature of, for example, the modeling efforts of pioneers such a: ý,nblatt and
Amari, another class of probabilistic weight change laws appears ;ii mnore recent
work under the name simulated annealing, introduced by S. Kirkpatrick, C. D. Gel-
latt, and H. P. Vecchi. 29 The main idea of simulated annealing is the transposition
of a method from statistical mechanics, namely the Metropolis algorithm, 34 into
the general context of large complex systems. The Metropolis algorithm provides
an approximate description of a many-body system, namely a material that an-
neals into a solid as temperature is slowly decreased. Kirkpatrick et al.drew an
analogy between this system and problems of combinatorial optimization, such as
the traveling salesman problem, where the goal is to minimize a cost function. The
methods and ideas, as well as the large-scale nature of the problem. are so closely
tied to those of neural networks that the two approaches are often linked. This
link is perhaps closest in the Boltzmann machine,' which uses a simulated anneal-
ing algorithm to update weights in a binary network similar to the additive model
studied by Hopfield. 2s

26. CONCLUSION
We have seen how the adaptive filter formalism is general enough to describe a
wide variety of neural network modules for associative memory, category learning,
and pattern recognition. Many systems developed and applied in recent years are
variations on one or more of these modular themes. This approach can thus provide
a core vocabulary and grammar for further analysis of the rich and varied literature
of the neural network field.
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How are the highly ordered sets of axonal connections so characteristic of
organization in the adult vertebrate central nervous system formed dur-
ing development? Many problems must be solved to achieve such precise
wiring: axons must grow along the correct pathways and must select, their
appropriate target(s). Even once the process of target selection is complete,

however, the many axons that comprise a particular projection must still
arrange themsives in an orderly, and highly stereotyped pattern, typically
one in which nearest-neighbor relations are preserved so that the terminal
arbors of neighboring projection neurons are also neighbors within the tar-

get. Here, I would like to consider the process by which this final patterning
of neuronal connections comes about during development. Studies of the
vertebrate visual system, reviewed here, have provided extensive evidence
in favor of the hypothesis that an activity-dependent competition between
axonal inputs for common postsynaptic neurons is responsible in good part
for the establishment of orderly sets of connections.
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