ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2550794

Achieving Logarithmic Growth Of Temporal And Spatial Complexity In
Reverse Automatic Differentiation

Article in Optimization Methods and Software - April 1994

DOI: 10.1080/10556789208805505 - Source: CiteSeer

CITATIONS READS
383 450
1 author:

Andreas Otto Karl Griewank
Humboldt-Universitat zu Berlin
260 PUBLICATIONS 12,085 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Abs-Linear Learning by Gradient Based Methods or Mixed Binary Linear Optimization View project

Project One-Shot optimization algorithms View project

All content following this page was uploaded by Andreas Otto Karl Griewank on 07 October 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2550794_Achieving_Logarithmic_Growth_Of_Temporal_And_Spatial_Complexity_In_Reverse_Automatic_Differentiation?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2550794_Achieving_Logarithmic_Growth_Of_Temporal_And_Spatial_Complexity_In_Reverse_Automatic_Differentiation?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Abs-Linear-Learning-by-Gradient-Based-Methods-or-Mixed-Binary-Linear-Optimization?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/One-Shot-optimization-algorithms?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Griewank?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Griewank?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Humboldt-Universitaet-zu-Berlin?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Griewank?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Griewank?enrichId=rgreq-c74dc3d852afe07476590902eab40fb9-XXX&enrichSource=Y292ZXJQYWdlOzI1NTA3OTQ7QVM6MTAzMDc2MzQ2MjA0MTY1QDE0MDE1ODY3MjQ2NjE%3D&el=1_x_10&_esc=publicationCoverPdf

Copyright information to be inserted by the Publishers

ACHIEVING LOGARITHMIC GROWTH OF
TEMPORAL AND SPATIAL COMPLEXITY IN
REVERSE AUTOMATIC DIFFERENTIATION *

ANDREAS GRIEWANK

Mathematics and Computer Science Division, Argonne National Laboratory,

Argonne, Illinois 60439

In its basic form the reverse mode of automatic differentiation yields gradient vectors at a small
multiple of the computational work needed to evaluate the underlying scalar function. The prac-
tical applicability of this temporal complexity result, due originally to Linnainmaa, seemed to be
severely limited by the fact that the memory requirement of the basic implementation is propor-
tional to the run time, T', of the original evaluation program. It is shown here that, by a recursive
scheme related to the multilevel differentiation approach of Volin and Ostrovskii, the growth in
both temporal and spatial complexity can be limited to a fixed multiple of log(7). Other com-
promises between the run time and memory requirement are possible, so that the reverse mode
becomes applicable to computational problems of virtually any size.

KEY WORDS: Gradient, Adjoint, Complexity, Checkpointing, Recursion

1 INTRODUCTION

Many computational problems involve nonlinear vector functions
F(z) : R"—R",

which are evaluated by codes written in a high-level computer language such as For-
tran or C. Mathematically, this evaluation process can be interpreted as sequence
of n elementary transformations

sip1 — fi(sq) f:S—S | (1)

where S denotes a larger vector space of real variables that includes, in particular,
the dependent and independent variables of F'. Provided that the transformations
Ji are all differentiable with Jacobians f’(s;), the chain rule implies that

F'(Qs0) = P fr_y(sn-1) - fr_a(sn=2),..., fi(si),. .. fo(s0) QT

where () and P are projections onto the domain and range of F', respectively. Even
though the individual Jacobians f] are likely to be extremely sparse, Speelpenning

i3

* This work was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

2 A. GRTEWANK

[8] and others have observed that multiplying them together from right to left (i.e.,
for i = 0,1,2,...,n — 1) may be much less efficient than multiplying them from
left to right, especially when n, << ng4. Of particular importance are cases where
F’ has only one row (i.e., n, = 1) or is multiplied from the left by a row vector y.
Then the product £ = yF’(x) can be obtained as & = 5p@), with sy the result of
the adjoint recurrence

8 — 801 fl(8) for i=n—-1,n-2,...,0

starting from s, = yP. Hence there is only one vector-matrix product associated
with each elementary function, so that the effort for evaluating F' and yF’ should
be comparable [4]. Provided that the f; are sufficiently simple, this is indeed the
case in terms of the usual operations counts. However, the potential difficulty for
this adjoint, top-down, or reverse mode of automatic differentiation is that it seems
as though either the Jacobians f/ or the arguments s; have to be saved in some form
during the original forward sweep (i.e., the execution of the recurrence (1)). This
spatial complexity is usually proportional to the temporal complexity of the original
evaluation program and may therefore be quite large. Current implementations of
the reverse mode [b] typically store 15—20 bytes per arithmetic operation, which
may require 30 megabytes of storage for each minute evaluation time on a Sun 3.
Even though care can be taken that these large data sets are accessed sequentially
rather than randomly, this kind of memory requirement is clearly debilitating on
larger problems.

While more economical implementations of the basic scheme can certainly ex-
tend the range of applicability of the reverse mode, we describe a modification that
destroys the proportionality between the temporal complexity of the original evalu-
ation program and the spatial complexity of the reverse mode. Since we will be able
to establish the possibility of merely logarithmic growth, suitable implementations
of the reverse mode should allow the automatic evaluation of gradients and other
adjoint vectors for problems of virtually any size. In accounting for computational
costs, we will try to be as realistic and system independent as possible. The prob-
lem we are addressing is closely related to that of logical program reversability,
which has attracted some interest in theoretical computer science. Bennett[2] con-
jectured already in 1973 that a logarithmic growth in the spatial complexity might
be achievable. The technique advocated here could also be useful for debugging
purposes, where previous states need to be reconstructed by some form of running
the program backward.

The paper is organized as follows. In Section 2 we develop a convenient model of
computations and their complexities on a single-processor machine with a fixed-size
core and a sequentially accessed disk file of arbitrary size. In Section 3 we consider
the basic reverse method, which minimizes temporal complexity, and its opposite,
an even less attractive scheme that needs very little extra storage, but essentially
squares the run time. In Section 4 we describe a recursive program for adjoint
evaluations and derive bounds for their complexities. In Section 5 we assume that
the function evaluation can be broken into a sequence of computational steps that
are roughly of equal size in terms of the tape length needed to record them. Under

LOGARITHMIC REVERSE DIFFERENTTATTON 3

this quite reasonable assumption we develop in Section 6 a binomial partitioning
scheme for recursive reversion that minimizes the growth in spatial and temporal
complexity. Logarithmic growth is already achievable by a simpler bisection scheme
that is used in our current implementation. In Section 7 we map out other feasible
combinations of spatial and temporal complexities on a given problem. Section 8
contains some numerical results with this experimental program and discusses the
practical ramifications and implementation issues.

2 COMPUTATIONAL FRAMEWORK AND COMPLEXITY MEASURES

For the purposes of our complexity analysis, we assume that the evaluation of
the vector function in question is carried out by a sequence of calls to elementary
procedures
f:s={0,1} -5 |

where R = |S| < oo is the size of the state space S. In other words, the states
s € S are represented by bit vectors of length R on which the procedures f effect
certain transformations. In practice, most of these bits will be part of binary
representations of integers or floating-point numbers, but that is of no concern
here. We refer to the application of f to a particular state s € S as a callto f at s.

Without loss of generality we may assume that all f belong to a given finite
set L of elementary procedures. In practice, this library usually includes all binary
elementary operations but may also contain more involved procedures, such as basic
linear algebra routines or quadratures. Since dimensions and logical flags can be
calling parameters, the complexity of these calls f may depend strongly on the
state vectors s to which they apply. We will use two complexity measures: a size
and a work-vector denoted by

Ifls € 2 and w(f); eR?

respectively. The o components of w(f)s may account separately for various com-
putational costs (e.g., logical or floating-point operations, and memory accesses to
various parts of S). Since each component of w represents a certain amount of
execution time on a particular machine, we consider the whole vector as a temporal
complexity measure.

The spatial complexity measure |f|s counts the number of bits one has to record
on some internal or external medium in order to remember which procedure f was
applied and to undo its call at s (i.e., restore s given f(s)). For optimizing the
recursive differentiation process described in the next section, we will require that
a suitable upper bound |f|s is computable at negligible cost for any particular call
Js. On the other hand, the work vectors w(f)s; need not be known or estimated
for that optimization. It is also interesting to note that, at least on a shared-
memory machine, the temporal complexity w(f); is likely to depend strongly on
the number of available processors, but the the spatial complexity |f|; should be
essentially constant.

4 A. GRTEWANK

To indicate that the action of a call to f at s must be recorded, we will use the
statement s < f(s) rather than just s « f(s). The cost for this action will be
denoted by

w(f)s = w(f)s € R

We will make sure that all recorded data can be retrieved in a last-in-first-out
fashion and, therefore, will refer to the corresponding storage device as the tape.
Apart from recording some elementary procedures, we will also use the system
utilities snapshot(s) and retrieve(s) to copy the current state vector s € S
onto the tape and then to reinitialize S to the snapshot later on. All data are
written forward and read backward so that none can be recovered twice. Apart
from restricting the maximal length of the tape, one may also be concerned about
the total amount of data transfer to and from the tape. Fortunately, we will see
that this I/O effort grows at worst proportional to the the amount of arithmetic
operations needed fo the total adjoint calculation.

The ratio w(f)s/|f|s can be interpreted as a measure of computational intensity,
which is quite small for single arithmetic operations but should be rather large for
well-designed subroutines. For example, consider an elementary procedure f that
multiplies a variable vector by an m x n matrix that resides as a constant in S.
Then only the values of the input vectors and output vectors (plus the dimensions
m,n and the addresses of the first matrix and vector elements) need to be recorded
on tape. Consequently, the size |f|; of a call to f is of order m + n, whereas its
temporal complexity grows like m - n, in any sensible measure. In this example the
recording on the tape would also be quite cheap, so that w(f)s &~ w(f)s for typical
s. The decomposition of a calculation into elementary procedures in our sense is, of
course, not unique, and one may ask how a given problem should be decomposed for
the purposes of reverse automatic differentiation. As a general rule, we suggest that
the elementary procedures should be computationally intensive, in that w(f)s/|f]s
is not too small for most s, but at the same time the adjoint f; (discussed below)
must be easy to code and evaluate. In the case of the linear transformation dis-
cussed above, the corresponding adjoint procedure amounts merely to multiplying
an adjoint m vector by the transposed of the constant matrix.

The key ingredient of reverse automatic differentiation i1s that each call of f at s
has a unique adjoint procedure call

fs 05— S8

where the adjoint state space S i1s simply a replica of S. We consider the restoration
of s from f(s) as an implicit part of the adjoint call f;, so that even logical and
integer procedures have nontrivial adjoints. It is assumed that there is a library
of adjoint procedures f € L that can be invoked at any pair (s,5). The size |f|;
defined above determines how much information must be retrieved from the tape if
one wishes to apply fs, assuming S is in the state f(s). Since the adjoints f; are,
in fact, linear mappings on S, we may assume that their work vector

w(fs) = w(f)s €R’

LOGARITHMIC REVERSE DIFFERENTTATTON 5

1s essentially independent of the particular adjoint state to which they are applied.
Moreover, we will assume that the complexity of an adjoint call can be bounded
by a multiple of the underlying direct call, so that for some diagonal matrix D of
order o,

w(f)s < Dw(f)s < Duw(f)s

for all f € L and s € S. If the library L consists solely of binary arithmetic
operations and univariate system functions, one can show that, under reasonable
conditions on the computer system in use, the scaled identity matrix D = 51 1s
large enough [4].

For the sake of completeness we may formalize the concept of a computer program
P as follows. et P be a numbered set of m instructions each of which consists of
two components: a procedure f € L and a mapping from S to the counter range
[1,...,m]. The second component lets every instruction nominate its successor,
possibly as a function of flags and counters in the state space. Thus we allow
for loops and conditional jumps rather than restricting ourselves to straight-line
code. There must be terminal instructions that nominate themselves as successors
for certain acceptable states s, and one or more entry instructions to begin the
execution. All these details have no bearing on our analysis, except that we assume
the effort of stepping through the program P to be negligible compared to the cost
of manipulating the state spaces S and S and the tape. Finally, we assume that
the overhead in calling the adjoint procedures f € L is also small.

Concluding this section, we summarize the framework developed. There are two
randomly accessed state spaces S and S of fixed size R = |S| bits and a strictly
sequentially accessed tape file of arbitrary length. Procedures f € L are called to
transform a given state s € S into f(s) € S, an action which may be recorded on
the tape with |f|; bits. Using this record, one can subsequently call on an adjoint
procedure f; that recovers s from f(s) on S and effects some (linear) transformation
on the adjoint space S. Associated with unrecorded, recorded and adjoint procedure
calls are computational cost vectors w(f)s, w(f)s > w(f)s, and w(f)s < Dw(f),
respectively. The system utilities snapshot(s) and retrieve(s) transfer a copy of
the vector s between the state space and the tape.

3 MINIMIZING EITHER TEMPORAL OR SPATIAL COMPLEXITY

Throughout the remainder of the paper, we consider a sequence of (n+ 1) states s;
and n procedure calls f; at s; that are generated according to

Siv1 — fi(si) for i=0,1,...n—2,n—1 (2)

from some fixed initial state sg € S. Correspondingly, we may define for a fixed
terminal s, € S the adjoint states s; by the reverse recurrence

52_1%f2(§l) fO?” i:n_lan_Qa"'alaO) (3)

6 A. GRTEWANK

where we abbreviate f; = f;,. The adjoint vector sy is the actual target of the calcu-
lation and could, for example, represent the gradient of a scalar function evaluated
by the successive calls f;.

The basic implementation of the reverse mode (i.e., the calculation of sy based
on (3)) consists of recording all procedure calls f; on the tape during the forward
sweep (2) and then executing the reverse sweep reading the tape backwards. The
spatial and temporal complexity of the basic scheme is described by

S|+ 15|+ = 2R+T (4)
and A B A A
W+W < W+DW <(I+D)W | (5)
where 1 1
T=Y" filse » W= wlfis, (6)
i=0 i=0
and

W;iw(ﬁ)s, , W;iw(ﬁ)s, . (7)

Thus we have reestablished the by now well-known — but still surprising — result
that the basic reverse scheme yields the adjoint vector 5y as a function of the pair
(50, 5n) for a fixed multiple of the temporal complexity needed to calculate s, as
a function of sg. Unfortunately, compared to the original evaluation process, the
spatial complexity grows essentially by the factor

h = T/R |, (8)

which will be central to our analysis.

To get an idea of what the ratio h means in practice, let us briefly consider
a time-dependent partial differential equation on a square. Using a grid with N
nodes in each spatial direction, we may describe the state at any time by several
vectors of size N2 (plus some counters and flags that we may neglect). To progress
to the next step, we need one or more copies of each original state variable and a
few intermediates, so that R could be something like 50 N? bytes, assuming reals
are stored in four bytes each. Over M > N discrete time steps, the total number
floating-point operations would be about 50 M N2, which corresponds to a tape size
of T'= 1000 M N2 bytes. (Here we have assumed that each arithmetic operation is
recorded using 20 bytes). The resulting ratio h = 20 M can obviously be arbitrarily
large. In general, A can be thought of as the height of the computational graph
[1], with R representing its width and T the area (i.e., the total number of nodes).
This visualization of the situation is utilized in Fig. 1.

LOGARITHMIC REVERSE DIFFERENTTATTON 7

It appears that with regards to the size of A most computations are made up of
components that belong to one of the following three classifications:

h = O(one) For Stationary Structures in Fuclidean Plane and Space.
(Circuit Boards, Buildings, Vehicles, Satellites, Molecules, etc.)

h = O(T/t) For Evolution Calculations over a Period T" with Time-steps ¢.
(Multibody dynamics, Fluid Flow, Weather/Climate, etc.)

h = O(its) For fixed-point Tterations over a variable number of its steps.
(Adaptive Quadratures, Newton Variants, Gradient Methods, etc.)

On problems in the first class the reverse mode suffers no serious memory growth,
because the function evaluation process involves only nearest neighbor interaction
between structural components. Therefore the evaluation process can be done
essentially in-place, i.e., on the data structures representing the individual compo-
nents and their connectivity. That applies even for molecules and other multi-bosy
systems with long-range interactions, provided these enter additively into the overall
energy. Then the individual energy contributions can be evaluated and differenti-
ated separately, and their gradients may be accumulated immediately without any
need to keep a global tape.

All problems of the first class turn into an element of the second if one wishes to
study the evolution of the structure in question as a function of time. In robot or
satellite design, weather data assimilation and other optimal control problems one
needs the gradient of some performance measures or fitting functions with respect
to model parameters, boundary conditions, and controls. In control theory it is well
known that these gradients can be obtained with low temporal complexity by inte-
grating the linear co-state equation backward in time. The close relation between
this well-established technique and reverse automatic differentiation was analyzed
in Evtushenko’s contribution to the proceedings [3] of the first STAM Workshop on
the Automatic Differentiation of Algorithms. The same volume contains several
papers by leading researchers from Meteorology and Oceanography, where adjoint
models are in regular use. Despite great efforts to hand-code the adjoints as econom-
ically as possible, the storage requirement prevents their application to operational
models with fine resolution.

Problems in the third class are characterized by numerically induced iterations,
which may be interpreted as pseudo-time evolutions. In the case of implicit func-
tions, quadratures, and other problems with a well defined mathematical structure
their characteristics can often be exploited to obtain derivatives quite economically.
However, this requires a lot of insight and intervention by the user and the relevant
program fragments may be hard to isolate in a larger code. Therefore it is desirable
that the reverse mode can be implemented automatically such that numerical iter-
ations in some part of the evaluation process do not let the tape grow unacceptably
long.

The maximal tape size 1" is likely to be proportional to some norm of the work
vector W, unless the key elementary procedures f are composites such as matrix-
vector products with large computational intensities w(f)s /| f|s. We have implicitly

8 A. GRTEWANK

Final State

Snapshot
________ lo______________ SS
Snapshot
________ lo_______________ S4
Snapshot
TR [=== === - === == === == S3
Snapshot
_________ E_______________ Sz
Snapshot
___________P _______________ Sl
Initial State
SO

R

Maximal Memory Requirement

FIGURE 1: Computational Graph with vertical Time and horizontal Space axis

LOGARITHMIC REVERSE DIFFERENTTATTON 9

restricted the complexity of the elementary procedures f € L by requiring that
they have adjoint procedures f that can be coded easily for inclusion in the adjoint
library L. Volin and Ostrovskii [9] suggested recursively treating procedures as
programs with their own work space and evaluating their adjoints by performing
forward and reverse sweeps within these subprograms. We prefer to consider the
elementary procedures as lowest computational units and refer to the maximal size

G = max{|fi] : 0<i<n}

as the granularity of the calculation. Like the maximal tape size T the granularity
is dependent on the initial state sg, but by our assumptions both integers can be
computed during a preliminary forward sweep.

The basic method described above has optimal temporal complexity but requires
a potentially excessive amount of storage. At the opposite extreme one can minimize
spatial complexity at the expense of temporal complexity by the following simple
scheme. Suppose we have a tape file of size at least S + G. Then we can take a
snapshot of sy and execute the forward sweep without recording until reaching s,, _1.
The final call fn_l can now be executed and recorded so that the application of
fn—1 yields s,_1 from s,,. We may then repeat the process by reinitializing S to sg
and then executing another, mostly unrecorded, forward sweep. Since one adjoint
call can be applied each time, 55 must be reached after at most n (partial) forward
sweeps. Even if we record several smaller calls together, the number of forward
sweeps will be at least 7 = [T/G], so that the resulting temporal complexity is of
order nW, provided the work is reasonably evenly distributed between early and
late procedure calls.

4 RECURSIVE ADJOINT EVALUATION METHOD

An n-fold increase in the spatial complexity is clearly unacceptable even for compar-
atively small problems. However, the basic approach of repeating forward sweeps
from a previously saved state is quite viable. Rather than returning to the initial
state every time, we will instead take snapshots at checkpoints that are carefully
chosen to minimize the number of times a particular procedure has to be evalu-
ated. The basic idea is depicted in Fig. 1, where the checkpoints are spaced evenly.
By optimizing the number of snapshots, one can reduce the spatial complexity to
(’)(\/ER). This very significant saving in memory requires only one extra sweep
through each segment of the calculation sequence, so that the work estimate (5) is
increased by W. The work W for an unrecorded forward is always smaller than
the effort W for a recorded sweep, which in turn is typically dominated by the cost
W of the full adjoint sweep. Therefore, we can expect that a few additional un-
recorded sweeps will have little impact on the overall temporal complexity. Rather
than using just one level of snapshots as depicted in Fig. 2, one can apply the same
technique recursively to the horizontal slices of the graph.

Provided s € S and s € S have been initialized to the given sy and sg, the reverse
sweep can be performed in pieces by a call treeverse(0,0, n), where the recursive

10 A. GRTEWANK

procedure treeverse is defined as the informal program listed in Fig. 1.

treeverse(base,start, finis)
if start > base snapshot(s)
s «— fi(s) for i = base, ... start — 1
while base << finis
pick kidstart € (start, finis)
treeverse(start, kidstart, finis)
finis = kidstart
s — fi(s) for i = start, ..., finis — 1
s« fi(5) for i = finis — 1,.. ., starl
if start > base retrieve(s)
return

FIGURE 2: Recursive Adjoint Calculation Routine

The name treeverse was chosen to reflect the fact that we are traversing a tree
of recursive calls to perform a reverse sweep on the given computational sequence.
The index base indicates what state of the forward calculation has been reached and
the index bracket [start, finis] tells the invocation of treeverse which subrange
of the calculation it has to “cover.” Here, to “cover” means to move the adjoint
state back from § = 5fipis t0 S5407:. To this end treeverse first advances from
Shase tO Sstare, and then calls up several children to reduce the current target finis
until it is deemed close enough to start that the remaining stretch from sg¢q0¢ to
Sfinis can be recorded and reversed directly. Here the notion close enough is the
negation of the relation << that will be defined more specifically later on. Except
when base = start the initial state sy, 1s saved and later restored just before
control returns to the calling program. The recursion must terminate since the
child’s start kidstart must always lie inside the current bracket (start, finis), and
we have tacitly assumed that the test start << finis can hold only if the width
finis — start is greater than one. Under these two simple conditions on the while
condition and the choice of kidstart, the recursive procedure must terminate with
the correct result s = 35¢.

Sometimes the calculations performed by the functions f; for base < i < finis
may be known in advance to take place in a conveniently addressed subset of the
state space S. In this case we need only save and restore that subspace at the
beginning and end of the call to treeverse, repectively. In this way our recursive
formalism can be modified to include Volin and Ostrovskii’s multilevel differen-
tiation approach [9]. However, in this paper we assume that the simplicity and
convenience of taking snapshots of the whole state space outweigh the savings in
storage that might be achieved by a more localized approach. As we will briefly
discuss 1n the final section, the operating system may automatically provide this
localization through its virtual memory manager.

LOGARITHMIC REVERSE DIFFERENTTATTON 11

If one imposes an a priori bound on the size of the recordings, the maximal tape
length becomes essentially equal to R times the maximal depth of the recursion,
which we will denote by d. Hence we obtain the spatial complexity bound

Ty < GH+(d+r)R (9)

where the constant term

finis
r = %max{ Z |fZ|—G}

i=start

represents the maximal size of any recording measured in units of R.

As with the spatial complexity, we wish to bound the temporal complexity rel-
ative to the effort of executing the original forward calculation. For this purpose
let us consider how often any particular elementary procedure f; is evaluated dur-
ing one of the partial forward advances. By inspection of the informal program
for treeverse, we see that this procedure occurs exactly as often as the particular
index ¢ is contained in the interval [base, start) for a call to treeverse. Clearly 7 is
contained in the intervals [start, kidstart) for all children of the particular call that
eventually records f;. For that unique parent 7 must be contained in the interval
[start, finis) at the time of its call. This interval is traversed by all older siblings of
the parent, as their kidstart values exceed the value of finis at the time when the
parent itself was born. Since the grandparents’ interval [start, finis) contains that
of the parent, we conclude that the number of all older siblings of all direct ances-
tors must be added as well. While this argument seems rather complicated, we will
see below that the number of forward sweeps through any part of the calculation
sequence can be computed quite easily.

5 SEGMENTATION INTO COMPUTATIONAL STEPS

The spatial bound (9) is not optimal, because one may use shorter recordings at
larger depth. However, this does not help much, and a uniform recording size has
other advantages. Given r as a parameter, we will therefore partition the original
sequence of elementary procedures f; into segments called computational steps

F] = [fijafi7'+1a"'afi7'+1—1] for .7:0”77_1
Here the indices ¢; < n are defined as large as possible, subject to the constraint
that

Sl < jRr . (10)
k‘<i7'

This definition implies that the total number of computational steps 1s given by

W= [T/0R)]

12 A. GRTEWANK
and that for all 7 <1,

= > Ifil < rR+G

15<k<ijq

Our analysis will reveal that good choices of r are at least sizable fractions and
often greater than one, so that » R should be quite large compared to the granu-
larity. Consequently, we can expect that the sizes |F;| > r R — G are very close to
their average r R. To indicate that the elements of F; are applied with or without
recording, and similarly to represent the application of their adjoints in reverse
order, we use the statements

s — Fi(s) , s — Fi(s) , and 5 — F;(5)

respectively. Hence, we have coarsened the original sequence of elementary proce-
dures f; into a sequence of computational steps F; of nearly uniform size |F;| =~ r R.
Here size represents again the length of the recording needed to prepare the ground
for the corresponding adjoint step at a later time.

In explicitly time-dependent problems the F}; can be defined naturally as a sub-
sequence of several time steps. While imposing spatial uniformity on the computa-
tional steps we will not make any assumption regarding their temporal complexity.
Even if the computational effort per step varies widely, we can bound the overall
temporal complexity of the adjoint calculation by limiting the number of times any
one of the steps is (re)evaluated. Therefore, we can even allow for the possibil-
ity that the individual computational steps are evaluated with varying degrees of
concurrency on a parallel machine. In that case the steps must be separated by
synchronization boundaries, and a shared memory should be established at least in
the virtual sense.

At the level of the computational steps, we will replace the original counters base,
start, kidstart, and finis by the Greek indices 3, o, k, and ¢, respectively. These
single-character names will also be more convenient in the subsequent mathematical
analysis. To keep track of the depth, we will use a counter é that is decremented
from its initial value d at the beginning of each call. Similarly we will use a counter
7 that 1s decremented from its initial value ¢ every time the computational steps
F; with j in the current range [0, ¢) are executed without recording. The role of é
and 7 may be better understood if one rearranges the calling tree of treeverse as
a binary tree. To this end each call to treeverse generates a single left child, and
the parent duplicates itself as the right child. Then the values (d — §) and (t — 7)
in a particular instance of treeverse count how many left and right children occur
in its line of ancestry from the root, i.e., the top-level call.

In the absence of any other information regarding the nature of the computational
steps, we must choose the new kidstart version x by a partition function of the form

k = mid(é, 7, 0,¢)

To signal that no more children are required or that the limits d and ¢ are about
to be violated because either 4 or 7 have been reduced to zero, we use the special

LOGARITHMIC REVERSE DIFFERENTTATTON 13

treeverse($, 7, 5,0, ¢)

ifo>p
b=6-—1
snapshot(s)

s—Fi(s)forj=p,...,0—1
while k =mid(8, 7,0, ¢) < ¢

treeverse(é, 7,0, K, §)

T=1—1
o=k
if — 0 > 1 exit("treeverse fails”)
s — F,(s)
5 — F,(s)
if ¢ > (3 retrieve(s)
return

FIGURE 3: Recursive Adjoints by Range Partitioning

values
k=¢ if ¢g=c+1lordér=0
Now we can finally use the top-level call treeverse(d,t,0,0,n,) with the routine
treeverse reprogrammed as listed in Fig. 3.
Unless either 6 or 71s reduced to zero prematurely, the reverse sweep 1s completed
and satisfies the temporal complexity bound

W= W+W+tW . (11)

Here W, W, and W are as defined in (6) and (7). By comparison with (9) we see
that the two parameters d + r and ¢ directly and independently determine upper
bounds on the spatial and temporal complexity, respectively. Naturally the limits ¢
and d as well as the recording size r cannot be chosen arbitrarily, but they must be
large enough to allow the recursion to terminate successfully for a suitable definition
of the partition function mid. In the following section we will derive the partition
function that is optimal under our complexity assumptions. Since that derivation
1s complex, let us first consider a simple bisection scheme, which is sufficient to
yield the logarithmic growth alluded to in the title. Suppose we define & simply as
the midpoint

k=mid(é,7,0,¢) = [(c +6)/2] . (12)
This choice means that the width ¢ — o of the range to be covered is halved at
least once at each level. More precisely, at any particular instance in the calling
tree it will have been halved (d — é) + (t — 7) times, where d and t are the actual
parameters of the top-level call. Consequently the choice

t =d = [logyn,]

14 A. GRTEWANK

ensures that the recursive procedure must terminate regularly. For simplicity we
may define the computational steps according to (10) with » = 1 so that their
recording requires no more than R bits. Then we have n & h = T/ R so that by (9)
and (11)

(Ty— G—rR) ~ (We =W —-W) < log, (Z)
R W

In other words, for this particular partitioning strategy the increase in both tempo-
ral and spatial complexity is roughly equal to the logarithm base two of the number
of computational steps. As we will show in the next section, this penalty factor
can be reduced by a factor of two, and one can decrease the storage requirement
further by a more careful choice of the stepsize r. Until the end of the next section
the size r plays no role at all, and only the total number 5, of computational steps
1s important.

6 OPTIMAL COMPLEXITY BY BINOMIAL PARTITIONING.

Given the current limits 6 and 7 on the number of additional generations and the
number of extra forward sweeps, the value x =mid(...) determines a split of the
current range [0, ¢] into the two subranges [0, k] and [k, ¢]. Since the cost penalty
for covering the second subrange by the nested call to reverse is bounded in terms
of the parameters 6 and 7, one might as well choose the width x — ¢ as large as
possible, subject to the condition that the recursion can still be completed. In
this way the task of constructing an optimal function mid can be interpreted as a
dynamic programming problem.

For given 7 > 0 and 6 > 0 let us denote by 7(7,8) the maximal number of
computational steps that can be covered by treeverse using any possible choice
of mid. At this stage we have to allow for the theoretical possibility that some
n(7,8) are infinite, which would mean that arbitrarily long computations could be
inverted at a fixed increase in computational complexity. Unfortunately, that is not
the case, as we can see from the following inductive argument. By inspection of the
second program above, we have the inequality

nér) < 1+> p6-1la) . (13)

The summation should be interpreted backwards in that the last term n(6 — 1, 7) is
the width of the range covered by the first child of the current node. Subsequently
7 1s reduced by one and the next child is called with the parameters §—1,7—1, and
so on until 7 has been reduced to zero. At that stage no further children can be
generated and the current node records and reverts a single step, which is reflected
by the leading 1 on the right-hand side of (13). In calls where the first parameter
6 has already been reduced to zero, not a single child can be generated, as that
would require another snapshot being taken. Hence we find that

1 = n(6,0) = n0,7) forall ér>0 . (14)

LOGARITHMIC REVERSE DIFFERENTTATTON 15

Because of (13) each n(é, 7) is bounded by sums of the limiting unit values above so
that all of them must be finite. In fact since the n(é, 7) are supposed to be as large
as possible, we might as well define them recursively by (13) with < replaced by an
equal sign. By comparison with the summation formula for binomial coefficients
we obtain the explicit formula

n(6.7) = (6—1—7’) G+m)6+r—=1)---(6+1)

c) = , (15)

7!

which satisfies both the marginal conditions (14) and the relation (13) as an equality.
The corresponding partition function is given by the convex combination

o

To verify this assertion, one may simply check that if the current range is maximal
in that

k=mid(é,7,0,¢) = ’V (16)

(¢—0)=n(é7) ,

then the value of k defined above ensures for the right subrange

(¢ —r)=n(6—-1,7)

and for the left subrange
(h—o) = (6,7 — 1)

The decrement in 7 for the left subrange makes sense since the right subrange
is covered first, and in doing so treeverse once more marches through the left
subrange. The decrement of é for the right subrange makes sense since each call
entails another snapshot. Note that the last three equations are consistent with the
addition formula for binomial coefficients. To conclude this section, we can now
summarize the central result of this paper as follows.

THEOREM 6.1. A sequence of n computational steps F; can be reverted using up
to d snapshots and (re)evaluating each F; without recording at most ¢ times if and
only if

n o < ondt) = (d+8)l/(dth)
In addition, this procedure involves one recorded evaluation F, and one adjoint
evaluation F; of each computational step. The spatial and temporal complexity of
the complete reverse calculation is bounded by

Ti=G+(d+7)R and W, =W+ W+t W |
respectively. Here R = |S| and W, W, W are defined in (6) and (7).

The fact that the number of snapshots d and the number of extra passes ¢ enter
in a completely symmetric fashion into the maximal number of computational steps
1 is aesthetically quite pleasing. According to Stirling’s formula we have almost

exactly
o= A [G

16 A. GRTEWANK

so that for given n one may choose for example equal parameters
t=d ~ logy(n) ~ loga T/ (R)

Thus we see that this particular optimized scheme is about twice as efficient as the
simpler bisection scheme, whose complexity is already logarithmicin h = T/ R.

If one fixes either parameter d or ¢ at a certain level, the other parameter grows
like a fractional power of the number of steps to be covered. More specifically, it
follows again from (17) that for fixed positive d or ¢

t=0(Yn/r) o d=0(Vhfr)

respectively. Which one of the feasible combinations (d,¢) and r should be selected
for given h depends, of course, very much on the computing environment and the
user’s priorities. However, as we have noticed before, a small value of ¢, say 4, is
unlikely to increase the run time by much in comparison to the basic ¢ = 0 scheme.
At the same time this choice would reduce the memory requirement for the adjoint
calculation to the fourth root of the height h times the size of the state space.

Figure 2 depicts the optimal schedule for a sequence of 7(3,5) = 56 computa-
tional steps. Each horizontal line at level o + 1 from the bottom represents an
instantiation of treeverse. The vertical lines emanating from the horizontals rep-
resent calls to their children, whose level is given by the current value of k + 1. The
slanted lines connect groups of siblings who are called by their parents to revert one
computational step at a time without generating any more children of their own.
The recursive nature of the whole process is clearly discernible. An alternative
interpretation of Fig. 1 is that it represents a schedule for a system of elevators
in a high-rise building with 56 floors. In that situation ¢ = 5 represents the num-
ber of shafts, and d = 3 bounds the number of times any rider traveling from the
ground level to any one of the 58 floors has to switch elevators or merely halts at
a scheduled stop.

7 SELECTING THE SIZE OF COMPUTATIONAL STEPS

In this section we have so far assumed that the recording size r had been selected
a priori. On the other hand, we found that the complexity bounds d and ¢ are
optimally exploited if the number of computational steps is exactly equal to the
corresponding binomial 7(d,t). Hence it makes sense to define r as

r = h/n(d1),

which is always possible even if d = 0 = ¢ and thus 7(0,0) = 1. This extreme
choice records the whole calculation as a single computational step and corresponds
therefore to the basic version of reverse automatic differentiation. In general, we see
from (9) that the total length of the tape is proportional to the sum (d+r). Hence

56

51

36

LOGARITHMIC REVERSE DIFFERENTTATTON

H
\54“\53\
T
50
%%
T
46
%\
42
41 :4
39
38
37 —
35
H&\w\
%\
31
e
27
26 :2
24
23 —
o1 22
%\
17
16 :1
14
13 —
1" 12
10 :9
8
7 —
. 6
4
3 >
S E—
1 2 3 4 5}

FIGURE 4: Optimal Schedule for 5 Sweeps and 3 Snapshots

17

18 A. GRTEWANK

it makes sense to select d such that it minimizes the spatial complexity multiplier
d+r = d+ h/n(d) (18)

for fixed . An elementary examination shows that this objective is attained at the
unique d > 0 for which

d-(d+1)---(d+t) <t-h-t! < (d+1)---(d+it+1) . (19)
The corresponding recording size satisfies
0 < r—d/ft <1+1/t | (20)
so that we have approximately r & d/t, and the maximal length of the tape is about
Tg = dl+1/t) R = r(1+1)R

This means that ideally the fraction 1/(1 4 t) of the available tape length should
be allocated to the recordings, with the remaining larger fraction ¢/(1 + t) being
used for snapshots.

Since each call to treeverse reverts one computational step their total number
is exactly eta, = [/R/r]. Except for the top-level instance each of them calls the
system routines snapshot(s) and retrieve(s) once so that the total bit tranfer
between the state space and the tape is bounded by

2T+ (p —)R] < 2T(1+1/r) < 2T (1+1t/d) |

where the last inequality follows from (20). Thus we see that even when there is
only room for one state space copy on the tape, i.e., d = 1, the total bit transfer is
at most (1 + ¢) times the minimal amound 27, which is always needed to record
and revert each computational step once. Consequently our main complexity result
remains true even if the total bit transfer is included into the temporal complexity
measure W;.

Each computer program for the evaluation of the vector function in question has
a well defined height h = T'/R. If it is not known from evaluations at previous argu-
ments the height can be determined in a preliminary forward sweep. Alternatively
one might devise an adaptive scheme that dynamically allocates snapshots and re-
vises the schedule when the evaluation runs longer or shorter than expected. This
1s a field for future research and development. If A is known one can compute a pro-
file of pareto optimal space-time trade-offs by minimizing d +r for t = 0,1, ... The
resulting contours for A = 10,100, ...,10,000, 000 are plotted in Fig. 5. Along the
diagonal t = d the growth in both complexity factors is clearly logarithmic, whereas
either of them explodes in a hyperbolic fashion near the axes. Key observations
are that adjoints of calculations involving 100,000 or 1,000,000 computational steps
can be obtained at a cost increase by a factor of 10 or 12, respectively. Here cost
accounts for spatial and temporal complexity, including the bit transfer between
the state space and tape. While these cost increases are nonnegligible one obtains
full sensitivity information for one key objective or response with respect to all

LOGARITHMIC REVERSE DIFFERENTTATTON 19

L T T T T T T T T
\

.. Height h=T/R

>~ h=10,000,000

h=1,000,000 -

~-.__h=100,000

\ N .

8 h=10,000 TTe--o__)

Space penalty d+r

0 2 4 6 8 10 12 14 16 18

Time penalty t

FIGURE 5: Feasible space-time Combinations for given Height h

input variables, parameters, and controls. Currently, this information cannot be
obtained any other way.

8§ IMPLEMENTATION QUESTIONS AND DISCUSSION

The logarithmic complexity growth of the recursive method described and analyzed
in this paper has been verified by an experimental implementation. For this purpose
our C++ package ADOL-C [5] was modified using the forking and piping facilities
of UNIX System V. The tree of calls to treeverse was implemented as a tree of
processes with each child being spawned by a fork, which generates a full duplicate
of the parent’s environment. Therefore the child inherits all information accessible
to the parent, who halts 1ts own calculations until the child signals the completion
of 1ts task. This information is passed back by sending the updated adjoint values
through a pipe that has been set up by the parent for that particular purpose.
The parent then either sends out another child or records and reverts its own
computational step before returning control to the grandparent. The computational
steps are simply defined as a sequence of elementary operations, whose recording in
the buffer for the tape takes up a certain number of bytes. There is no attempt to
estimate or utilize the size of the state space in use. Instead the user picks desired
bounds d, t, but neither 6, 7 are never reduced below 1. Consequently the binomial
partitioning reduces to the bisection scheme when the combination d,¢ turns out
to be infeasible.

20 A. GRTEWANK

For example, the calculation of a 10 x 10 determinant using Legendre’s rule
involves 10! = 3,628, 800 multiplications and additions or subtractions. Since the
determinant was computed using a recursive function call, many assignments and
so-called death notices had to be recorded. These overhead operations brought the
total length of the tape to almost 7' = 814 megabytes, corresponding to nearly
a million computational steps of one kilobyte size. As predicted by the theory
this problem could be solved for the combination d = ¢t = 12. The computing
time was extensive, because all forward sweeps were performed with recording for
programming simplicity. An efficient version is currently being developed.

The UNIX implementation sketched above is surprisingly simple and even ele-
gant. To limit the size of the state space, one should relegate the evaluation of the
function and its adjoint to a separate process that contains only the data that are
actually needed for this purpose. Often this is only a comparatively small part in a
larger computational environment. In case of 10 x 10 determinant, there were only
123 live variables, so that the data set that must be duplicated by fork could be
very small indeed. Another crucial question is how the operating system handles
pages that are paged out at the time of a fork. It appears that current imple-
mentations immediately duplicate all these pages so that they may generate many
identical copies of pages that may never be touched by the function evaluation. The
UNIX documentation on fork promises for later releases a copy on write system,
where pages are duplicated only when either child or parent processes actually start
changing them. This localization to the active areas of the state space could make
checkpointing by forking quite efficient.

For the sake of user convenience and computational efficiency, it would be ideal
if reverse automatic differentiation were implemented at the compiler level. Some
compiler directives or new language constructs to identify independent and depen-
dent variables as well as critical program sections are needed. Almost everything
else could be handled by the compiler, if not the operating system. After profiling
an evaluation routine in terms of computational cost and memory usage at various
stages of the execution, the operating system could suggest a checkpoint schedule
that 1s more or less optimal under the particular circumstances.

ACKNOWLEDGEMENTS

The author is indebted to Ted Gaunt and Chuck Tyner for their invaluable help in
implementing the proposed method.

REFERENCES

1. F.L. Bauer, Computational graphs and rounding errors. SINUM, Vol. 11, No. 1 (1974), pp.
87-96.

2. C. H. Bennett, Logical Reversability of Computation, IBM Journal of Research and Devel-
opment, Vol. 17 (1973), pp. 525-532.

3. Yu. G. Evtushenko, Automatic differentiation viewed, in: Automatic Differentiation of Al-
gorithm: Theory, Implementation, and Application, A. Griewwank and G. F. Corliss, eds.,
STAM, Philadelphia, 1991.

LOGARITHMIC REVERSE DIFFERENTTATTON 21

A. Griewank, On automatic differentiation, in: Mathematical Programming: Recent Devel-
opments and Applications, ed. M. Iri and K. Tanabe, Kluwer Academic Publishers, Tokyo,
Pp. 83-108, 1989.

A. Griewank, D. Juedes, and J. Srinivasan, ADOL-C, a package for the automatic dif-
ferentiation of algorithms written in C/C++, Preprint MCS-180-1190, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, Illinois, 1990. To ap-
pear in TOMS.

M. Iri, T. Tsuchiya, and M. Hoshi, Automatic computation of partial derivatives and round-
ing error estimates with applications to large-scale systems of nonlinear equations, Journal
of Computational and Applied Mathematics, 24 (1988), pp. 365-392.

S. Linnainmaa, Taylor expansion of the accumulated rounding error, BIT, 16 (1976), pp.
146-160.

B. Speelpenning, “Compiling Fast Partial Derivatives of Functions Given by Algorithms,”
Ph.D. dissertation, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois, 1980.

Yu. M. Volin and G. M. Ostrovskii, Automatic computation of derivatives with the use
of the multilevel differentiation technigue, Computers and Mathematics with Applications,
Vol. 11, No. 11 (1985), pp. 1099-1114.

https://www.researchgate.net/publication/2550794

