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In multiple regression it is shown that parameter estimates based on minimum 
residual sum of squares have a high probability of being unsatisfactory, if not incor- 
rect, if the prediction vectors are not orthogonal. Proposed is an estimation procedure 
based on adding small positive quantities to the diagonal of X'X. Introduced is the 
ridge trace, a method for showing in two dimensions the effects of nonorthogonality. 
It is then shown how to augment X'X to obtain biased estimates with smaller mean 
square error. 

0. INTRODUCTION 

Consider the standard model for multiple linear regression, Y = X + ~, 
where it is assumed that X is (n X p) and of rank p, g is (p X 1) and unknown, 
E[.] = 0, and E[rt'] = O2In . If an observation on the factors is denoted by 
X = {x,l, x2, . . ., x^}, the general form X pis { 1i O S,(x,)} where the i0, are 
functions free of unknown parameters. 

The usual estimation procedure for the unknown i is Gauss-Markov-linear 
functions of Y = {y,} that are unbiased and have minimum variance. This 
estimation procedure is a good one if X'X, when in the form of a correlation 
matrix, is nearly a unit matrix. However, if X'X is not nearly a unit matrix, 
the least squares estimates are sensitive to a number of "errors." The results of 
these errors are critical when the specification is that X( is a true model. Then 
the least squares estimates often do not make sense when put into the context 
of the physics, chemistry, and engineering of the process which is generating 
the data. In such cases, one is forced to treat the estimated predicting function 
as a black box or to drop factors to destroy the correlation bonds among the Xi 
used to form X'X. Both these alternatives are unsatisfactory if the original 
intent was to use the estimated predictor for control and optimization. If one 
treats the result as a black box, he must caution the user of the model not to 
take partial derivatives (a useless caution in practice), and in the other case, 
he is left with a set of dangling controllables or observables. 

Estimation based on the matrix [X'X + kI], k > 0 rather than on X'X has been 
found to be a procedure that can be used to help circumvent many of the dif- 
ficulties associated with the usual least squares estimates. In particular, the 
procedure can be used to portray the sensitivity of the estimates to the par- 
ticular set of data being used, and it can be used to obtain a point estimate with 
a smaller mean square error. 
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1. PROPERTIES OF BEST LINEAR UNBIASED ESTIMATION 

Using unbiased linear estimation with minimum variance or maximum likeli- 
hood estimation when the random vector, ?, is normal gives 

= (X'X)-1 X'Y (1.1) 

as an estimate of g and this gives the minimum sum of squares of the residuals: 

0(=) = (Y - X)'(Y- X). (1.2) 

The properties of ~ are well known [18]. Here the concern is primarily with 
cases for which X'X is not nearly a unit matrix (unless specified otherwise, the 
model is formulated to give an X'X in correlation form). To demonstrate the 
effects of this condition on the estimation of B, consider two properties of 5 - 
its variance-covariance matrix and its distance from its expected value. 

(i) VAR (v) = 2(X'X)-1 (1.3) 

(ii) L1 _= Distance from ~ to [. 
L= (2 - 0)'( - ) (1.4) 

E[L2] = 2 Trace (X'X)-1 (1.5) 

or equivalently 
E['] = - 

'] + 2 Trace (X'X)- (1.5a) 

When the error ? is normally distributed, then 
VAR [L2] = 2a4 Trace (X'X)-2 . (1.6) 

These related properties show the uncertainty in E when X'X moves from a 
unit matrix to an ill-conditioned one. If the eigenvalues of X'X are denoted by 

Xmnax =- X1 > 2 > .. * > Xv = Xmin > 0, (1.7) 

then the average value of the squared distance from ( to 1 is given by 

E[L2] = a2 E(1/) (1.8) 
i-1 

and the variance when the error is normal is given by 

VAR [L2] = 2a4E(1/X,)2. (1.9) 

Lower bounds for the average and variance are a2/Xmin and 2_4/X2 i, respectively. 
Hence, if the shape of the factor space is such that reasonable data collection 
results in an X'X with one or more small eigenvalues, the distance from 0 to o 

will tend to be large. Estimated coefficients, i, that are large in absolute value 
have been observed by all who have tackled live nonorthogonal data problems. 

The least squares estimate (1.1) suffers from the deficiency of mathematical 
optimization techniques that give point estimates; the estimation procedure 
does not have built into it a method for portraying the sensitivity of the solution 
(1.1) to the optimization criterion (1.2). The procedures to be discussed in the 
sections to follow portray the sensitivity of the solutions and utilize nonsen- 
sitivity as an aid to analysis. 
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2. RIDGE REGRESSION 

A. E. Hoerl first suggested in 1962 [9] [11] that to control the inflation and 
general instability associated with the least squares estimates, one can use 

* 

- [X'X + kI]-'X'Y; k 2 0 (2.1) 
= WX'Y. (2.2) 

The family of estimates given by k > 0 has many mathematical similarities 
with the portrayal of quadratic response functions [10]. For this reason, estima- 
tion and analysis built around (2.1) has been labeled "ridge regression." The 
relationship of a ridge estimate to an ordinary estimate is given by the alterna- 
tive form 

,* = [i, + k(X'X)-]-' (2.3) 
= Z9. (2.4) 

This relationship will be explored further in subsequent sections. Some properties 
of (*, W, and Z that will be used are: 

(i) Let i (W) and j (Z) be the eigenvalues of W and Z, respectively. Then 

(,(W) = 1/(X, + k) (2.5) 

~.(Z) = Xi/(X, + k) (2.6) 
where X, are the eigenvalues of X'X. These results follow directly from the 
definitions of W and Z in (2.2) and (2.4) and the solution of the character- 
istic equations [W - {I| = 0 and IZ - (Ij = 0. 

(ii) Z = I - k(X'X + kI)- = I - kW (2.7) 
The relationship is readily verified by writing Z in the alternative form 
Z = (X'X + kI)-1 X'X = WX'X and multiplying both sides of (2.7) on the 
left by W-1 . 

(iiz) * for k F 0 is shorter than P, i.e. 

(?*)'(P*) < ?'?. (2.8) 
By definition Z* = ZO. From its definition and the assumptions on X'X, Z 
is clearly symmetric positive definite. Then the following relation holds [17]: 

("*)' ( *) < a2.(Z) -'?. (2.9) 
But ~max(Z) = X,/(X1 + k) where XI is the largest eigenvalue of X'X and 
(2.8) is established. From (2.6) and (2.7) it is seen that Z(0) = I and that 
Z approaches 0 as k -> oo. 

For an estimate P* the residual sum of squares is 

0*(k) = (Y - X*)' (Y - X-*) (2.10) 
which can be written in the form 

(*(k) = Y'Y - (,*)' X'Y - k(*)' (8*). 
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The expression shows that 4*(k) is the total sum of squares less the "regres- 
sion" sum of squares for * with a modification depending upon the squared 
length of ~*. 

3. THE RIDGE TRACE 

a. Definition of the Ridge Trace 
When X'X deviates considerably from a unit matrix, that is, when it has 

small eigenvalues, (1.5) and (1.6) show that the probability can be small that 0 
will be close to 5. In any except the smallest problems, it is difficult to untangle 
the relationships among the factors if one is confined to an inspection of the 
simple correlations that are the elements of X'X. That such untangling is a 
problem is reflected in the "automatic" procedures that have been put forward 
to reduce the dimensionality of the factor space or to select some "best" subset 
of the predictors. These automatic procedures include regression using the 
factors obtained from a coordinate transformation using the principal com- 
ponents of X'X, stepwise regression, computation of all 2P regressions, and some 
subset of all regressions using fractional factorials or a branch and bound tech- 
nique [3][5][6][7][8][14][19]. However, with the occasional exception of principal 
components, these methods don't really give an insight into the structure of the 
factor space and the sensitivity of the results to the particular set of data at 
hand. But by computing 0*(k) and +*(k) for a set of values of k, such insight 
can be obtained. A detailed study of two nonorthogonal problems and the con- 
clusions that can be drawn from their ridge traces is given in [12]. 

b. Characterization of the Ridge Trace 
Let B be any estimate of the vector P. Then the residual sums of squares can 

be written as 

4 = (Y - XB)'(Y - XB) 

= (Y - X)'(Y - X) + (B - ()'X'X(B- -) (3.1) 
= .min + 0(B) 

Contours of constant 4 are the surfaces of hyperellipsoids centered at ~, the 
ordinary least squares estimate of (. The value of 4) is the minimum value, 4min, 

plus the value of the quadratic form in (B - (). There is a continuum of values 
of Bo that will satisfy the relationship 4 = m.in + -bo where 4o > 0 is a fixed 
increment. However, the relationships in Section 2 show that on the average 
the distance from | to 5 will tend to be large if there is a small eigenvalue of X'X. 
In particular, the worse the conditioning of X'X, the more ~ can be expected 
to be too long. On the other hand, the worse the conditioning, the further one 
can move from ~ without an appreciable increase in the residual sums of squares. 
In view of (1.5a) it seems reasonable that if one moves away from the minimum 
sum of squares point, the movement should be in a direction which will shorten 
the length of the regression vector. 

The ridge trace can be shown to be following a path through the sums of 
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squares surface so that for a fixed c a single value of B is chosen and that is the 
one with minimum length. This can be stated precisely as follows: 

MIinimize B'B 

subject to (B - )'X'X(B - ) = o. (3.2) 
As a Lagrangian problem this is 

Minimize F = B'B + (1/k)[(B - ')'X'X(B - )' - 0o] (3.3) 
where (l/k) is the multiplier. Then 

aF = 2B + (1/k)[2(X'X)B - 2(X'X)p] = 0 (3.4) 

This reduces to 

B = ~* = [X'X + kI]- X'Y (3.5) 
where k is chosen to satisfy the restraint (3.2). This is the ridge estimator. Of 
course, in practice it is easier to choose a k > 0 and then compute 0o . In terms 
of ~* the residual sum of squares becomes 

0*(k) = (Y - X^*)'(Y - X^*) = - + k2f*,(X'X)-l *. (3.6) 
A completely equivalent statement of the path is this: If the squared length of 
the regression vector B is fixed at R2, then ~* is the value of B that gives a 
minimum sum of squares. That is, '* is the value of B that minimizes the function 

F, = (Y - XB)' (Y - XB) + (1/k) (B'B - R2). (3.7) 
c. Likelihood Characterization of the Ridge Trace. 

Using the assumption that the error vector is Normal (0, o2I,,) the likelihood 
function is 

(27r2)-n/2 exp { - (1/22)(Y - X0)'(Y - X0)}. (3.8) 
The kernel of this function is the quadratic form in the exponential which can 
be written in the form 

(Y - X5)'(Y - X0) = (Y - X)'(Y - X0) + ( - y)'X'X( - 5 ). (3.9) 
With (3.1) in 3b, this shows that an increase in the residual sum of squares is 
equivalent to a decrease in the value of the likelihood function. So the contours 
of equal likelihood also lie on the surface of hyperellipsoids centered at (. 

The ridge trace can thereby be interpreted as a path through the likelihood 
space, and the question arises as why this particular path can be of special 
interest. The reasoning is the same as for the sum of squares. Although long 
vectors give the same likelihood values as shorter vectors, they will not always 
have equal physical meaning. Implied is a restraint on the possible values of 0 
that is not made explicit in the formulation of the general linear model given 
in the Introduction. This implication is discussed further in the sections that 
follow. 
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4. MEAN SQUARE ERROR PROPERTIES OF RIDGE REGRESSION 

a. Variance and Bias of a Ridge Estimator 
To look at (* from the point of view of mean square error it is necessary to 

obtain an expression for E[L (k)]. Straightforward application of the expectation 
operator and (2.3) gives the following: 

E[L 2(k)] = E[(-* - )'(* - )] 
= E[(- - [)'Z'Z(~ - -)] + (Z; - ;)'(Z[ - g) (4.2) 
= a2 Trace (X'X)-'Z'Z + g'(Z - I)'(Z - I)g (4.3) 

= a2'Trace (X'X + kI)-1 - k Trace (X'X + kI)-2] 

+ k2g'(X'X + kI)-2 (4.4) 
p 

= 2 XE i/(X, + k)2 + k2g'(X'X + kI)-2 (4.5) 

= (k) + 72(k) (4.6) 

The meanings of the two elements of the decomposition, ay(k) and 72(k), are 
readily established. The second element, 7y2(k), is the squared distance from 
Z g to [. It will be zero when k = 0, since Z is then equal to I. Thus, 72(k) can be 
considered the square of a bias introduced when * is used rather than (. The 
first term, 7y1(k), can be shown to be the sum of the variances (total variance) 
of the parameter estimates. In terms of the random variable Y, 

g*= Z- = Z(X'X)-1 X'Y. (4.7) 

Then 
VAR [*] = Z(X'X)-1X'VAR [Y]X(X'X)-'Z' 

0= 2Z(X,x)-Z' . (4.8) 

The sum of the variances of all the A*. is the sum of the diagonal elements of (4.8). 
Figure 1 shows in qualitative form the relationship between the variances, 

the squared bias, and the parameter k. The total variance decreases as k in- 
creases, while the squared bias increases with k. As is indicated by the dotted 
line, which is the sum of 7y(k) and y2(k) and thus is E[L2(k)], the possibility 
exists that there are values of k (admissible values) for which the mean square 
error is less for g* than it is for the usual solution g. This possibility is supported 
by the mathematical properties of y, (k) and 72(k). [See Section 4b.] The function 
y I(k) is a monotonic decreasing function of k, while 72 (k) is monotonic increasing. 
However, the most significant feature is the value of the derivative of each 
function in the neighborhood of the origin. These derivatives are: 

Lim (d-y/dk) = -2'2z(1/ X) (4.9) 
k-0 + 

Lim (dy2/dk) = 0 . (4.10) 

Thus, y,(k) has a negative derivative which approaches - 2pa2 as k --+ O for an 
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orthogonal X'X and approaches - o as X'X becomes ill-conditioned and X, - 0. 
On the other hand, as k -+ 0' , (4.10) shows that 72(k) is flat and zero at the 
origin. These properties lead to the conclusion that it is possible to move to 
k > 0, take a little bias, and substantially reduce the variance, thereby improv- 
ing the mean square error of estimation and prediction. An existence theorem 
to validate this conclusion is given in Section 4b. 

b. Theorems on the Mean Square Function 
Theorem 4.1. The total variance yi(k) is a continuous, monotonically de- 

creasing function of k. 

Corollary 4.1.1. The first derivative with respect to k of the total variance 
7y (k), approaches - o as k -+ O' and X, -D 0. 

Both the theorem and the corollary are readily proved by use of -y(k) and its 
derivative expressed in terms of Xi. 

Theorem 4.2. The squared bias y2(k) is a conltinuous, monotonically in- 
creasing function of k. 
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Proof: From (4.5) y2(k) = k2:'(X'X + kI)-2. 

Corollary 4.1.1. The first derivative of the total variance, y[(k), approaches 
- oo as k -- 0+ and the matrix X'X becomes singular. 

Both the theorem and the corollary are readily proved by use of i( (k) and its 
derivative expressed in terms of Xi. 

Theorem 4.2. The squared bias 72(k) is a continuous, monotonically in- 
creasing function of k. 

Proof: From (4.5) 72(k) = k2g'(X'X + kI)-2 . If A is the matrix of eigen- 
values of X'X and P the orthogonal transformation such that X'X = P'AP, then 

7p 

72(k) = k2 >2 ca/(Xi + k)2 (4.11) 
i 

where a = PL. (4.12) 

Since X, > 0 for all i and k > 0, each element (Xi + k) is positive and there are 
no singularities in the sum. Clearly, 72(0) = 0. Then 72(k) is a continuous 
function for k > 0. For k > 0 (4.11) can be written as 

72(k) = a2/[l + (XA/k)]2 . (4.13) 

Since X, > 0 for all i, the functions Xi/k are clearly monotone decreasing for 
increasing k and each term of 72(k) is monotone increasing. So 72(k) is monotone 
increasing. q.e.d. 

Corollary 4.2.1. The squared bias 72(k) approaches g'5 as an upper limit. 

Proof: From (4.13) lim k-c. 7r2(k) = a2 ' = a = 

l'P'P[ = 5'5 q.e.d. 

Corollary 4.2.2. The derivative 'y(k) approaches zero as k O- . 

Proof: From (4.11) it is readily established that 

dy2(k)/dk = 2k E Xi2/(Xi + k)3 * (4.14) 
1 

Each term in the sum 2kXia./(Xi + ck)3 is a continuous function. And the limit 
of each term as k --> 0+ is zero. q.e.d. 

Theorem 4.3. (Existence Theorem) There always exists a k > 0 such that 
E[L2(k)] < E[L2(0)] = -2 E2(1/X). 

Proof: From (4.5), (4.11), and (4.14) 

dE[L2(k)c]/dk = dyl(k)/dk + dY2(k)/dk 

= -2_2 > Xi/(X, + k)3 + 2k Xia2/(Xi + k)3. (4.15) 
1 1 

First note that 71 (0) = ar2 El'(l/X) and 72(0) = 0. In Theorems 4.1 and 4.2 
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it was established that 71 (k) and 72(k) are monotonically decreasing and in- 
creasing, respectively. Their first derivatives are always non-positive and non- 
negative, respectively. Thus, to prove the theorem, it is only necessary to show 
that there always exists a k > 0 such that dE[L\(k)]/dk < 0. The condition for 
this is shown by (4.15) to be: 

k < o2/amnax q.e.d. (4.16) 

c. Some Comments On The Mean Square Error Function 
The properties of E[L'(k)] = 7yi(k) + 7y2(k) show that it will go through a 

minimum. And since 72 (k) approaches 5' g as a limit as k -* oo, this minimum will 
move toward k = 0 as the magnitude of ['3 increases. Since 5' is the squared 
length of the unknown regression vector, it would appear to be impossible to 
choose a value of k -7 0 and thus achieve a smaller mean square error without 
being able to assign an upper bound to 5' 5. On the other hand, it is clear that [' [ 
does not become infinite in practice, and one should be able to find a value or 
values for k that will put ~* closer to 5 than is ~. In other words, unboundedness, 
in the strict mathematical sense, and practical unboundedness are two different 
things. In Section 7 some recommendations for choosing a k > 0 are given, 
and the implicit assumptions of boundedness are explored further. 

5. A GENERAL FORM OF RIDGE REGRESSION 
It is always possible to reduce the general linear regression problem as defined 
in the Introduction to a canonical form in which the X'X matrix is diagonal. In 
particular there exists an orthogonal transformation P such that X'X = P'AP 
where A = (3j,Xj) is the matrix of eigenvalues of X'X. Let 

X = X*P (5.1) 
and 

Y = X*a + e (5.2) 
where 

a = P5, (X*)'(X*) = A, and a'a = ' . (5.3) 
Then the general ridge estimation procedure is defined from 

a* = [(X*)'(X*) + K]-(X*)'Y (5.4) 
where 

K = (8jkj), k, 0 . 
All the basic results given in Section 4 can be shown to hold for this more general 
formulation. Most important is that there is an equivalent to the existence 
theorem, Theorem 4.3. In the general form; one seeks a ki for"each canonical 
variate defined by X*. By defining (L*)2 - (a* - a)'(a* - a) it can be shown 
that the optimal values for the ki will be ki = o2/a2 . There is no graphical 
equivalent to the RIDGE TRACE but an iterative procedure initiated at 

. = A2/a2 can be used. (See Section 7) 
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6. RELATION TO OTHER WORK IN REGRESSION 

Ridge regression has points of contact with other approaches to regression 
analysis and to work with the same objective. Three should be mentioned. 

* In a series of papers, Stein [20][21] and James and Stein [13] investigated the 
improvement in mean square error by a transformation on a of the form 
CO, 0 < C < 1, which is a shortening of the vector $. They show that such 
a C > 0 can always be found and indicate how it might be computed. 

* A Bayesian approach to regression can be found in Jeffreys [15] and Raiffa 
and Schlaifer [16]. Viewed in this context, each ridge estimate can be con- 
sidered as the posterior mean based on giving the regression coefficients, O, a 
prior normal distribution with mean zero and variance-covariance matrix 
; = (5,i b2/k). For those that do not like the philosophical implications of 

assuming ( to be a random variable, all this is equivalent to constrained 
estimation by a nonuniform weighting on the values of g. 

* Constrained estimation in a context related to regression can be found in 
[1]. For the model in the present paper, let 3 be constrained to be in a closed, 
bounded convex set C, and, in particular, let C be a hypersphere of radius R. 
Let the estimation criterion be minimum residual sum of squares 4, = 
(Y - XB)'(Y - XB) where B is the value giving the minimum. Under the 
constraint, if $t < R2, than B is chosen to be (; otherwise B is chosen to be 
* where k is chosen so that (R*)'(*) = R2 . 

7. SELECTING A BETTErr ESTIMATE OF 3 

In Section 2 and in the example of Section 3, it has been demonstrated that 
the ordinary least squares estimate of the regression vector v suffers from a 
number of deficiencies when X'X does not have a uniform eigenvalue spectrum. 
A class of biased estimators (*, obtained by augmenting the diagonal of X'X 
with small positive quantities, has been introduced both to portray the sen- 
sitivity of the solution to X'X and to form the basis for obtaining an estimate 
of 3 with a smaller mean square error. In examining the properties of ?*, it can be 
shown that its use is equivalent to making certain boundedness assumptions 
regarding either the individual coordinates of ( or its squared length, ('3. As 
Barnard [12] has recently pointed out, an alternative to unbiasedness in the 
logic of the least squares estimator ( is the prior assurance of bounded mean 
square error with no boundedness assumption on O. If it is possible to make 
specific mathematical assumptions about (, then it is possible to constrain the 
estimation procedure to reflect these assumptions. 

The inherent boundedness assumptions in using (* make it clear that it will 
not be possible to construct a clear-cut, automatic estimation procedure to 
produce a point estimate (a single value of k or a specific value for each ki) as 
can be constructed to produce 3. However, this is no drawback to its use because 
with any given set of data it is not difficult to select a (* that is better than 3. 
In fact, put in context, any set of data which is a candidate for analysis using 
linear regression has implicit in it restrictions on the possible values of the 
estimates that can be consistent with known properties of the data generator. 
Yet it is difficult to be explicit about these restrictions; it is especially difficult to 
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be mathematically explicit. In a recent paper [4] it has been shown that for the 
problem of estimating the mean ,u of a distribution, a set of data has in it implicit 
restrictions on the values of a that can be logical contenders as generators. Of 
course, in linear regression the problem is much more difficult; the number of 
possibilities is so large. First, there is the number of parameters involved. To 
have ten to twenty regression coefficients is not uncommon. And their signs have 
to be considered. Then there is X'X and the (2) different factor correlations and 
the ways in which they can be related. Yet in the final analysis these many 
different influences can be integrated to make an assessment as to whether the 
estimated values are consistent with the data and the properties of the data 
generator. Guiding one along the way, of course, is the objective of the study. 
In [12] it is shown for two problems how such an assessment can be made. 

Based on experience, the best method for achieving a better estimate '* is to 
use ki = k for all i and use the Ridge Trace to select a single value of k and a 
unique ~*. These kinds of things can be used to guide one to a choice. 

* At a certain value of k the system will stabilize and have the general char- 
acteristics of an orthogonal system. 

* Coefficients will not have unreasonable absolute values with respect to the 
factors for which they represent rates of change. 

* Coefficients with apparently incorrect signs at k = 0 will have changed to 
have the proper sign. 

* The residual sum of squares will not have been inflated to an unreasonable 
value. It will not be large relative to the minimum residual sum of squares 
or large relative to what would be a reasonable variance for the process 
generating the data. 

Another approach is to use estimates of the optimum values of ki developed in 
Section 5. A typical approach here would be as follows: 

* Reduce the system to canonical by the transformations X = X*P and a = 
P5. 

* Determine estimates of the optimum ki's using k,o = a/2 . Use the kiO 
to obtain ~*. 

* The ki,o will tend to be too small because of the tendency to overestimate 
a'a. Since use of the kio will shorten the length of the estimated regression 
vector, kio can be re-estimated using the d* . This re-estimation can be 
continued until there is a stability achieved in (&*)'(a*) and i,o = o2/(d*)2. 

8. CONCLUSIONS 
It has been shown that when X'X is such that it has a nonuniform eigenvalue 

spectrum, the estimates of ( in Y = X + , based on the criterion of minimum 
residual sum of squares, can have a high probability of being far removed from 5. 
This unsatisfactory condition manifests itself in estimates that are too large in 
absolute value and some may even have the wrong sign. By adding a small 
positive quanity to each diagonal element the system [X'X + K] * = X'Y acts 
more like an orthogonal system. When K = kI and all solutions in the interval 
0 < k < 1 are obtained, it is possible to obtain a two-dimensional characteriza- 
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tion of the system and a portrayal of the kinds of difficulties caused by the 
intercorrelations among the predictors. A study of the properties of the estimator 
(* shows that it can be used to improve the mean square error of estimation, 
and the magnitude of this improvement increases with an increase in spread 
of the eigenvalue spectrum. An estimate based on (* is biased and the use of a 
biased estimator implies some prior bound on the regression vector 5. However, 
the data in any particular problem has information in it that can show the 
class of generators ( that are reasonable. The purpose of the ridge trace is to 
portray this information explicitly and, hence, guide the user to a better estimate 

NOMENCLATURE 
= (X'X)-1X'Y 

* = *(k) = [X'X + kIF-X'Y; k > 0 
W = W(k) = [X'X + kI]-1 
Z = Z(k) = [I + k (X'X)1]-' = I - kW 
X = Eigenvalue of X'X; X, >: X2 >_ ... > Xp > 0 
A = (5ijX) = the matrix of eigenvalues 
P = An orthogonal matrix such that P'AP = X'X 
L2(k) = E[ (1* - )'(* - ) ] = y(k) + 72(k) 
7a(k) = Variance of the estimate g* 
72(k) = Squared bias of the estimate g* 
K = (5iiki); ki 2> 0 A diagonal matrix of non-negative constants. 
a= Pr 
X* XP' 
a* = [ (X*)'(X*) + K]-1 (X*)'Y 
W* = [ (X*)'(X*) + K]-1 
Z*- {I + [ (X*)'(X*) ]-1 K]} = I - KW 

REFERENCES 

[1] BALAKRISHNAN, A. V. (1963). An operator theoretic formulation of a class of control 
problems and a steepest descent method of solution. Journal on Control 1, 109-127. 

[2] BARNARD, G. A. (1963). The logic of least squares. Journal of the Royal Statistical Society, 
Series B 25, 124-127. 

[3] BEALE, E. M. L., KENDALL, M. G., and MANN, D. W. (1967). The discarding of variables 
in multivariate analysis. Biometrika 54, 356-366. 

[4] CLUTTON-BROCK, M. (1965). Using the observations to estimate prior distribution. 
Journal of the Royal Statistical Society, Series B 27, 17-27. 

[5] EFROYMSON, M. A. (1960). Multiple regression analysis. Chapter 17 in Mathematical Meth- 
ods for Digital Computers. Edited by A. Ralston and H. S. Wilf, John Viley & Sons, Inc., 
New York. 

[6] GARSIDE, M. J. (1965). The best subset in multiple regression analysis. Applied Statistics 
14. 

[7] GORMAN, J. W. and TOMAN, R. J. (1966). Selection of variables for fitting equations to 
data. Technometrics 8, 27-51. 

[8] HOCKING, R. R. and LESLIE, R. N. (1967). Selection of the best subset in regression anal- 
ysis. Technometrics 9, 531-540. 

[9] HOERL, A. E. (1962). Application of ridge analysis to regression problems. Chemical 
Engineering Progress 58, 54-59. 

66 



[10] HOERL, A. E. (1964). Ridge analysis. Chemical Engineering Progress Symposium Series 60, 
67-77. 

[11] HOERL, A. E. and KENNARD, R. W. (1968). On regression analysis and biased estimation. 
Technometrics 10, 422-423. Abstract. 

[12] HOERL, A. E. and KENNARD, R. W. (1970). Ridge Regression. Applications to non- 
orthogonal problems. Technometrics 12. 

[13] JAMES, W. and STEIN, C. M. (1961). Estimation with quadratic loss. Proc. 4th Berkeley 
Symposium 1, 361-379. 

[14] JEFFERS, J. N. R. (1967). Two case studies in the application of principal component 
analysis. Applied Statistics 16, 225-236. 

[15] JEFFREYS, H. (1961). Theory of Probability. Third Edition, Oxford University Press, 
London, Chapter III. 

[16] RAIFFA, H. and SCHLAIFER, R. (1961). Applied Statistical Decision Theory, Harvard 
University, Boston, Chapters 11 and 13. 

[17] RILEY, J. D. (1955). Solving systems of linear equations with a positive definite, Sym- 
metric, but possibly ill-conditioned matrix. Mathematics of Computation 9, 96-101. 

[18] SCHEFFE, H. (1960). The Analysis of Variance. John Wiley & Sons, Inc., New York, 
Chapters 1 and 2. 

[19] SCOTT, J. T., Jr. (1966). Factor analysis and regression. Econometrica 34, 552-562. 
[20] STEIN, C. M. (1960). Multiple regression. Chapter 37 in Essays in Honor of Harold Hotell- 

ing, Stanford University Press. 
[21] STEIN, C. M. (1962). Confidence sets for the mean of a multivariate normal distribution. 

Journal of the Royal Statistical Society, Series B, 24, 265-296. 

RIDGE REGRESSION 67 


	Article Contents
	p.55
	p.56
	p.57
	p.58
	p.59
	p.60
	p.61
	p.62
	p.63
	p.64
	p.65
	p.66
	p.67

	Issue Table of Contents
	Technometrics, Vol. 12, No. 1 (Feb., 1970), pp. 1-206
	Front Matter [pp.181-190]
	Computers in Statistical Research: Simulation and Computer-Aided Mathematics [pp.1-15]
	Some Implications of Interactive Graphic Computer Systems for Data Analysis and Statistics [pp.17-31]
	GERT, A Useful Technique for Analyzing Reliability Problems [pp.33-48]
	The Estimation of Reliability from Stress-Strength Relationships [pp.49-54]
	Ridge Regression: Biased Estimation for Nonorthogonal Problems [pp.55-67]
	Ridge Regression: Applications to Nonorthogonal Problems [pp.69-82]
	Computational Efficiency in the Selection of Regression Variables [pp.83-93]
	A Problem in the Statistical Comparison of Measuring Devices [pp.95-102]
	A Selection Procedure for Multivariate Normal Distributions in Terms of the Generalized Variances [pp.103-117]
	Bayesian Design of Single and Double Stratified Sampling for Estimating Proportion in Finite Population [pp.119-130]
	On the Modes of a Mixture of Two Normal Distributions [pp.131-139]
	An Application of Majorization to Comparison of Variances [pp.141-145]
	Notes
	The Sequential Youden Square [pp.147-152]
	The Inverse of a Finite Toeplitz Matrix [pp.153-156]
	On the Choice of Regression in Linear Calibration. Comments on a Paper by R. G. Krutchkoff [pp.157-161]
	Combining Independent Estimators: An Empirical Sampling Study [pp.162-165]
	Comparisons of Approximations to the Percentage Points of the Sample Coefficient of Variation [pp.166-169]

	Book Reviews
	untitled [pp.171-172]
	untitled [pp.172-173]
	untitled [pp.173-174]
	untitled [p.174]
	untitled [pp.174-175]
	untitled [pp.175-176]
	untitled [p.176]
	untitled [pp.176-178]
	untitled [pp.178-179]
	untitled [p.180]

	Summaries of New Books [pp.183-186]
	Letters to the Editor [pp.187-188]
	Abstracts of Papers Presented at SPES Session of the 129th Annual Meeting of the American Statistical Association [pp.191-206]
	Back Matter



	Cit r76_c76:1: 
	Cit r78_c78:1: 
	Cit r91_c91:1: 
	Cit r95_c95:1: 


