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ABSTRACT Learning algorithms have been used both on
feed-forward deterministic networks and on feed-back statisti-
cal networks to capture input-output relations and do pattern
classification. These learning algorithms are examined for a
class of problems characterized by noisy or statistical data, in
which the networks learn the relation between input data and
probability distributions of answers. In simple but nontrivial
networks the two learning rules are closely related. Under
some circumstances the learning problem for the statistical
networks can be solved without Monte Carlo procedures. The
usual arbitrary learning goals of feed-forward networks can
be given useful probabilistic meaning.

Learning algorithms enable model "neural networks" to ac-
quire capabilities in tasks such as pattern recognition or con-
tinuous input-output control. Feed-forward networks of an-
alog units having sigmoid input-output response have been
studied extensively (1-4). These networks are multilayer
perceptrons with the two-state threshold units of the original
perceptron (5-8) replaced by analog units having a sigmoid
response. Another kind of network (9, 10) is based on sym-
metrical connections, an energy function (11), two-state
units, and a random process to generate a statistical equilib-
rium probability of being in various states. Its connection to
the physics of a coupled set of two-level units in equilibrium
with a thermal bath (like a magnetic system of Ising spins
with abitrary exchange) led it to be termed a Boltzmann net-
work.
These networks appear rather different. One is determip-

istic, the other statistical; one is discrete, the other continu-
ous; one has a one-way flow of information (feed-forward) in
operation, the other a two-way flow of information (symmet-
rical connections). The learning algorithms therefore appear
quite different, so much so that comparisons of the computa-
tional effort needed to learn a given task for these two kinds
of networks have sometimes been made. This paper shows
that variants of each of these two classes of networks, adapt-
ed to emphasize the meaning of the actual procedure em-
ployed, often have very closely related learning algorithms
and properties. This view finds useful meaning, in terms of
probabilities, for a parameter that has appeared arbitrary in
analog perceptron learning algorithms. Some three-layer sta-
tistical networks can be solved by gradient descent without
the necessity of statistical averaging on a computer.

Task

Consider a set of instances a of a problem. For each in-
stance, input data consist of analog input values If (k = 1,

n). We are also given a set of propositions 4 (4 = 1,
nm). We consider problems for which the input data do

not exactly define the situation. Thus, given the input data
for instance a, there is a probability Q+,<' that proposition 4

is true and a probability Q-',o that the proposition is false.
The object of the network learning is to capture the IJQ-+,"
relationship, which is all the information that is known about
the implication of the input instance a. This information can
subsequently be used in a variety of modes, of which the
simplest would be to choose an action based on maximum
likelihood by using these probabilities.
A computational probabilistic approach to a task is exem-

plified in hidden Markov approaches to speech-to-text con-
version (12). The ensemble of speech utterances is described
in terms of word models using a Markov description of the
possible sound patterns associated with a given word. When
a particular utterance is heard, the probability that each
word model might generate that sound is evaluated. Se-
quences of such probabilities can then be used for word se-
lection (13). The problem is intrinsically probabilistic be-
cause individual words often cannot be unambiguously un-
derstood in a context-free and speaker-independent fashion
and because the analysis done may intrinsically ignore evi-
dence necessary to distinguish accurately between similar
sounds. A feed-forward network for doing such a task should
generate probabilities of the occurrence of words as its out-
puts.
Both the deterministic and the stochastic networks to be

discussed will be given the same task-namely, to capture
the probability of the truth of a set of propositions based on a
given set of instances by using a learning algorithm. E. Baum
and F. Wilczek (personal communication) have considered
the utility of learning a probability distribution with an ana-
log perceptron. Anderson and Abrahams (14) have discussed
more elaborate uses of probabilities in deterministic net-
works.

Analog Perceptron

Consider a multilayer, feed-forward analog perceptron. Al-
though what is described in this section can be extended to
systems having a large number of layers, we will for simplic-
ity restrict consideration to a system having three layers of
analog units and two layers of connections (Fig. la). The
outputs of the first layer are forced by the input data. When
input case a is present, the input data are the output of these
units k and are given by Ik`t
The input-output relation of the second and third units are

given by output = g(input):

g(u) = tanhf3u. [Il

The connections Tbk connect the outputs of the input units k
to the input of the second-layer unit b. Thus the input to unit
b for instance a is

Ub TbkI,
k

[2]

and the output of middle-layer unit b is then VA' = g(,1uA').
The third layer of units corresponds to the propositions
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interest for learning by gradient descent on f in the space of
connection weights Tbk and W41b. By direct differentiation,

d
af

- -p>Aa[(Q+a- Qa) - tanh 3u4] Vba, [6]

where Vba = tanh(P>ITbk lk) Similarly,
k

- 3_ 2A-[(QXa,4-Q-',Ofi)-tanh/3UkW]TV4bIk'9(Ubc),aTbk a

Tbk W4b

FIG. 1. (a) The three-layer analog perceptron. The connections
are feed-forward. The second- and third-layer units have sigmoid
response. The outputs of the input layer are Ik,. (b) The three-layer
Boltzmann network. The connections are of equal strength in the
feed-back and feed-forward directions (symmetric). The second-
and third-layer units have two-state thermal equilibria. The outputs
of the input layer (which is always clamped) are Ik.

and is connected to the second layer by connection weights
W,4b. The input to a third-layer unit for case a is

u4 WlbVb [3]
b

and unit 4 has an output X, = )
The output X,; will be interpreted as follows. Define

p_# ,4a (1 + X,;)/2 = (e±134)/(e3u$+ e- pu). [4]

P+'¾ will be assigned a meaning-namely, the probability
prediction of the network that proposition 4) is true, given
input case a. P-,,¾ is the probability that 4 is false.
A learning algorithm can be constructed with the help of a

convex positive function that is minimized if P~4, = _, , for
all a. The entropy ofQ with repect to P is a logarithmic mea-
sure often used for comparing probability functions (15):

f = >Aa> > Qaaln(Qa/P ) 0. [5]
a +

Aa is a positive "significance weight" assigned to case a.
There is no need that all A' be the same. This kind of proba-
bility measure was used by Ackley et al. (10) in developing
the Boltzmann learning algorithm and by Baum and Wilczek
(personal communication). Since we want to compare analog
multilayer perceptron learning with Boltzman machine
learning, this is the appropriate optimizing measure to use
for the analog perceptron case. It is not the measure that has
customarily been used in analog perceptrons, where an arbi-
trary quadratic criterion of "best" is in general use.
The shape of f can be studied by taking its derivatives

with respect to the synaptic weights. This gradient is also of

[7]

where g' is the derivative of g with respect to its argument.
When learning by gradient descent is used, data may not be
explicitly available about QG for each particular case. How-
ever, the average over a large training set will implicitly con-
tain the information. Thus, Eqs. 6 and 7 can still be used to
capture the real probability distribution when information
about QG is limited to values of 1 or 0 for particular in-
stances.
The usual analog perceptron approach to the problem of

making a decision about the truth or falsity of the various
propositions lacks any notion of probability. If the proposi-
tion is nominally true for instance a, it would try to train the
output unit to an arbitrary target value like 0.8 = Sa. Similar-
ly, if the instance is false, the target output would be Si =
-0.8. The cost function usually minimized is

G = 2>LAa1(So -X;2a [8]

Direct differentiation yields

G= -f3>LA(Sa, - g(,8ua))Vagg(,(34)-
aw

BA5b) [9]

Eqs. 6 and 9 differ by the factor of g'(,BuQ) and the occur-
rence of the arbitrary S; in place of the meaningful (Q< -
Q ,O). Some differences in meaning will be illustrated in the
Appendix. The same relation exists between Eq. 7 and
aG/aTbk.

Statistical Network

The statistical network (9) considered has two-state units in
a thermal statistical ("Boltzmann") environment, with char-
acteristic "temperature" 1/p. The arrangement of the units
is as shown in Fig. lb, with the weights now representing
two-way symmetric connections between the model units.
The topology of connections is identical to that in Fig. la.
We attack the same problem posed in the previous sec-

tion, that of capturing the correct probability distribution of
output states for all particular input cases a. The input units
are always fixed for any paticular case a, and no thermal
averaging is ever done on the input units. This ensemble av-
eraging is thus subtly different from that which was chosen
by Ackley et al. (10). It corresponds more naturally to the
way the network is to be queried, namely by fixing the input
units and observing the statistics of the output units. The
input units then need not be taken as binary but may instead
be continuous. They will be held to values I,. The energy
function of the system is then specific to a and is given by

E = -'jljaVbTbk - LZW<bVb/lq
k,b b,4

[10]

Vb = + 1 are the variables representing the two states of the
second-layer units, while 40 = + 1 is the variable represent-
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ing the state of the unit corresponding to proposition 4. The
value of Pf+,,6 given by the network is equated to the proba
bility that, for case a, the variable go has the value 1 (aver-
aged over all configurations of the V and a units). The appro-
priate function to minimize in the comparison ofP and Q is
now

F = iAaZ I Qa ,ln(Qa -0/p ). [11]
a *+-

The subscript ± on Q, refers to the cases true and false, and
P+ <4 are the thermal ensemble average probabilities for the
variables go.
Consider first the case of a single output proposition, so

that there is no sum on 4. Cases of few propositions have
been used in many problems, ranging from the assessment of
symmetries in spatial patterns (16) to the discrimination be-
tween pipes and rocks in sonar (17). Define

Z ZI exp(+pjIk, VbTbk ± 1Z W~bVb) [12]
all V k,b b

configurations

(i.e., the partition function for the intermediate-layer "spins"
for a fixed final igo, = + 1). Then

za = za + za

pa = za/za

Zc = 12 cosh(Pi TbkI/ ± W4b)

[13a]

[13b]

All the statistical averaging that normally occurs in Boltz-
mann (symmetric) network learning has been done explicit-
ly. The amount of computational labor involved in optimiz-
ing the weights by gradient descent on F using Eq. 14 is now
essentially the same as that which would be required for a
feed-forward analog network having the same structure.

Equivalence in the Mean-Field Approximation

The partition functions involved in F correspond to a simple
spin system. In circumstances where one spin interacts with
many other spins, a mean-field model often gives a good de-
scription of the statistical mechanics. When there is only a
single 4 variable, many spins b interact with an external field
I and a single spin go. The total field or input acting on the
spin AO must be only of order -2/B if proposition 4 has a
probability between 5% and 95% of being true. If there are
many intermediate layer spins b, then a typical PW4b should
be small compared to 1. This will certainly be the case if the
information about the probability distribution is delocalized
over many (>10) of the intermediate layer units, even if the
probabilities approach 1 or 0. In such a case, and in the spirit
of the mean-field approximation, the hyperbolic tangents
can be expended in powers of W. In lowest order,

aw4b a[(Q' Q') Z- , + Z]

[13c] tanh(P1 TbkI4 [15]

aF= a I[a(ln Z') a(ln Z)] [13d]

= -I3ZAaZ Qa((+ V)+ -(1Va))aa+
*-- iAa((/.k Vb)clamped - (AOL Vb)free)

A similar expression can be written for aF/dTbk. Exactly as
in the Boltzmann machine case, such derivatives can be
written as a sum over two ensembles. In the present case,
the "free" ensemble has p.4O, and Vb both taking on values of
±1, while for the "clamped" average, A is assigned a fixed
value of + or - with probability QOa, and the Vb averaged
over all configurations. The ensemble average in the free
case is different from that of Ackley et al. (10) in that in our
free average the input units are fixed, whereas in their free
average the input units are also free. The ensemble ofAckley
et al is particularly appropriate if one wishes also to be able
to do reverse inference, inferring "inputs" from "outputs,"
or to do general pattern completion. When only forward in-
ference is desired, the ensemble defined here is more appro-
priate.

Using Eq. 13c, we can also write out these derivatives,
obtaining

aF - _2IZAa>(±Q ,a+ Z± ')

[tanh(PZ TbkItk + f3 W4ba)]| [14]

and

1W - 2p>LAa (Qa-___ Z_

OTbk a + ( Z+Z[fJ

Ii PItanh(M TbkIf ±P Wa b)].

In the effective field approximation and to lowest order in
W, the mean field on spin 0 will be given by

Up = E W~b(Vg),
b

[16]

where

(V*) = tanh(PZ TbkIk) [17]

and

Za - Za
a +

- tanh f0ub.Z+ _Z
[18]

With these substitutions and to zero-order in W, Eq. 15 is the
same as Eq. 6 for the analog perceptron case except for a
trivial scale factor of 2.
A similar result can be obtained for aF/aTbk- In this case,

the term of zero-order in W vanishes, so an expansion must
be made in the right-hand square bracket of Eq. 14 to include
the term first-order in W. The expression for aF/aTbk is then
the same as Eq. 7 except for the same scale factor of 2. Thus
the terrain in "weight space" of the Boltzmann machine is
essentially the same as that of the analog perceptron and the
gradient-descent learning algorithms equivalent. This line of
argument is valid when the number of propositions is very
small.

Discussion

The case of many output units is more complex and can be
simplified in many directions. One rigorous conclusion is
that for the case ofm output units (propositions), Eq. 14 can
be generalized by defining 2' partial partition functions in-
stead of 2. Ifm is small, this may still lead to rapid learning
by gradient descent compared to a Monte Carlo approach.

Biophysics: Hopfield
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(The same is true if only 2m patterns dominate the outputs,
even though there are more output units.)
Analog approximations of Boltzmann networks in the

effective-field approximation are useful under broader cir-
cumstances. In any large connectivity and symmetric statis-
tical network that is input-dominated and has a single stable
solution in the mean-field approximation, the statistical av-
eraging of the statistical networks has little effect except to
smooth the mean response of the units, which is more easily
done by using analog units and the same connections. The
conditions necessary to produce an equivalence between the
generalized A-rule learning and learning in statistical net-
works emphasize a circumstance in which a large amount of
information from the previous layer is brought to bear on a
small set of propositions. The ability to make an expansion
in powers of matrix elements will follow in most networks
that funnel-down information from the first large layer of
hidden units.
A network with feed-back structure can capture some as-

pects of problems not available to feed-forward networks.
For multiple propositions, there is in general a probability
distribution Q(Al, /.2, /3,. . .) for variables Al, g2, /3, . .

whereas this paper has dealt a matching criterion in which
only the single-variable probability distributions are of inter-
est. A symmetric statistical network can in principle gener-
ate higher-order correlations and represent more complex
probability information. For such cases, the Boltzmann
learning algorithm and the feed-forward learning systems
will not be equivalent.

Appendix

A simple "diagnosis" model illustrates the significance of
probability knowledge and experts when relatively few cases
are available. Suppose a diagnosis "appendicitis" or "no ap-
pendicitis" is to be made on the basis of quantitative mea-
surements of eight variables. In a noise- and variation-free
world, these variables would have the values shown below.

Variable Il '2 I3 14 I5 '6 I7 I8
Appendicitis

No appendicitis

1 1 1 1 0 0 0 0

-1 -1 -1 -1 0 0 0 0

However, the person-to-person variation of each of these pa-
rameters could be considerable and the values are also influ-
enced by other illnesses, so that noise will be present in all
data. The data available for a particular (appendicitis) case
are then 1 + N1, 1 + N2, 1 + N3, 1 + N4, N5, N6, N7, and N8.
The noise values N1, . . ., N8 were chosen uniformly be-
tween Nmax and -Nmax. This diagnosis problem is appropri-
ate for a two-layer analog perceptron with eight input units, a
single output unit, eight adjustable weights, and one thresh-
old value. [An analysis of an actual medical diagnosis prob-
lem using an analog perceptron has been made by Le Cun
(personal communication).]
Suppose the existence of a perfect expert who can evalu-

ate, for any set Ii/ the probability Q+ that the patient has
appendicitis. There is also an oracle, who knows whether
each patient a actually has appendicitis. Three learning pro-
tocols were compared: (a) The generalized A learning rule,
with the target of ±0.8, using exact information from the ora-
cle; (b) same as a, but with a yes/no diagnosis from the ex-
pert ("yes" if Q' 0.5); (c) Eq. 6, with probability advice Q
from the expert for each case.
The network learned on a set of 20 cases, half of which

were (according to the oracle) cases of appendicitis. The per-
formance of each network was then evaluated on 200 new
cases, using the diagnosis "appendicitis" if the output of the

proposition unit was > 0 for case a. The experiment was
tried many times to collect statistics. When the noise with
Nm., was such that the expert made 8.4% errors, protocols
a-c yielded 12.6%, 10.5%, and 8.4% errors, respectively.
The network trained with the oracle disagreed with the ex-
pert 9.4% of the time and that trained in protocol b differed
6.4%, whereas that trained on the basis of probability infor-
mation disagreed with the expert only 1.4% of the time. The
disagreement between the network and the perfect expert is
a more striking measure of how well the problem has been
solved because it is first-order in the difference between a
particular network and the ideal one, while the number of
excess errors increases only quadratically with such differ-
ences.

In this problem, all three learning protocols should
achieve the same performance with large training sets. How-
ever, it is common to work with problems for which the data
are not complete or exhaustive, and appropriate generaliza-
tion by the network is still desired. In such a case, probabili-
ty information from experts or other sources can be used to
good advantage in learning protocol c. Even in a yes/no
evaluation, a true expert is to be preferred to an oracle.
The arbitrary parameter S in Eqs. 8 and 9 can be qualita-

tively interpreted in this problem. In case a the pattern of the
learning is already apparent early in the gradient descent,
where all the values of g'(u) are nearly equal. In this region,
the gradient descent of Eq. 9 is equivalent to that of the spe-
cial case of Eq. 6 in which each instance is assigned the same
probability, 0.1, of being a misdiagnosis. This assignment is
not optimal if cases in the training set are recognizably of
varying uncertainty or if the probability of error is not 0.1.
This anlaysis is not valid later in the learning, since g'(u) will
then take on different values. This may affect both the rate
of learning and, in multilayer perceptrons, the quality of the
minimum that is found.

I acknowledge helpful conversations with D. W. Tank, E. Baum,
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