
BIT 16 (1976), 146-160 

TAYLOR EXPANSION OF THE ACCUMULATED 

ROUNDING ERROR 

SEPPO LINNAINMAA 

A b s t r a c t .  

The article describes analytic and algorithmic methods for determining the 
coefficients of the Taylor expansion of an accumulated rounding error with respect 
to the local rounding errors, and hence determining the influence of the local 
errors on the accumulated error. Second and higher order coefficients are also 
discussed, and some possible methods of reducing the extensive storage require- 
ments are analyzed. 

1. I n t r o d u c t i o n .  

When computation is carried out with finite precision, the resulting 
value of a numerical process is in general different from the true value 
of the result. The difference between these two values is called the 
accumulated rounding error of the result. I t  is caused by the errors in 
the initial values and by the local rounding errors which occur in each 
intermediate operation. Generally the accumulated rounding error can 
be expanded as a Taylor expansion with respect to the local errors, a n d  

thus the effect of the local errors upon the accumulated error can be 
found, as noted by Henriei [1]. In  this article analytic and algorithmic 
methods are presented for this purpose. The methods are a further devel- 
opment of those given in [2] and [6]. 

Usually the accumulated error can be approximated quite accurately 
using only the first order terms of the Taylor ' expansion [1], [5], [3]. 
Thus the emphasis in this article is on determination of the first order 
coefficients, although higher orders are also considered. 

For the a l~osteriori algorithmic computation of the coefficients of 
the Taylor expansion it is necessary to save some information on all the 
operations of the process. The amount  of computer storage required can 
be prohibitively large, and some methods of reducing it are discussed. 

Received Jan. 22, 1976. 



TAYLOR EXPANSION OF T I l E  ACCUMULATED ROUNDING E R R O R  147 

2. The Taylor expansion of the rounding errors. 

A computing process usually consists of a sequence of real numbers, 
say ul ,  u~ . . . . .  u N. Some numbers in this sequence are initial values, the 
others being produced by operations whose operands (usually two) appear 
earlier in the sequence, i.e. 

(])  u t = Qi(u~,uk),  j , k  < i ,  

where Qi(u j ,uk )  may denote e.g. - u p  U j ÷ U k ,  u~--Uk,  Uj X U k or u j / u  k. 

In  actual computations, floating-point numbers u i' of some finite 
precision t are normally used instead of the non-terminating real numbers 
u i. Thus, if the value of a real number u rounded to t digits is denoted 
by fl(u,t), the operation (1) is replaced by a floating-point operation 

(2) u /  = fl(Q~(u/,u~'),t), 

i.e. each accurate result is rounded to t digits. The local (absolute) round -  

ing  error r(ui)  (or rl) of ui is defined as 

(3) r i = r(ui)  = u i ' - - Q i ( u / , U k '  ) . 

In  some connections it is more useful to consider the local relat ive round- 
ing error 

A t ! 

(~) ri = ~(ui) = rJQi(uj  ,uk ) .  

If the whole process contained no rounding errors, then u l' would be 
replaced by ui ,  i = 1 , . . .  ,n. The a c c u m u l a t e d  r o u n d i n g  error R ( u t )  (or Ri) 
of u i is the difference of these two numbers, i.e. 

(5) R i = R(u~) = u i ' - u t .  

Using (1) and (3), (5) can be expressed as 

R i = r t + Q t ( u / ,  uk ' )  - Qi (up  Uk) 

and hence, using the Taylor expansion, as 

(6) R~ = r~+ZT=l Y.£=o 
{(m ! (~ - m) ! ) - l (~Q,(x ,  y ) /~xm~y~-~)~  = ~J~ ~ ~ ~ } R j m R ~ - ' ~  

where Rj and R~ are defined by (5). Below the values of the coefficients 
of (6) in braces are denoted by the abbreviated notations di.~, dt. k, 

dt.il, di.ik and di.kk respectively for the value pairs (1,0), (0,1), (2,0), 
(1, 1) and (0,2) of (re, n - m ) .  Thus, for instance, 

di.jt: = ~2Qi(x, y ) / (ax  ~y)l~ = u i, y = uk.  

With these notations, (6) can be writ ten as 



148 SEPPO LINIffAINMAA 

(7) R t = r I + di.iR 1 + di.~R k + di.iiR~ ~ + di .~R¢R~ + d i .~R~ ~ + O(R a) , 

where O(R a) stands for terms of the third and higher orders with respect 
to the R's. For example, if Qi(x ,y )  denotes x x y, then (7) is equal to 
Ri = ri + u~Ri + uiR~ + R~R~. 

Table 1. Coeff icients  o f  1st and  2nd order terms o f  (7) for 
elementary  operations Qi(ul,  u~). 

Q,(u1,ug) di.~ d¢.g dt.z d,.j~ d,.kg 

--uj --1 0 0 0 0 
uj + u~ 1 1 0 0 0 
uj --u~ 1 -- 1 0 0 0 
u~ x u~ u~ uj 0 1 0 
uj / u~ 1/u~ -u~/uk~ 0 - 1/u~2 uj/u~3 

The values of some of the coefficients d for elementary operations Qi 
are listed in Table 1. The coefficients of the higher order terms are zero 
for the operations given in Table 1 except for division, in which ease 
the coefficients of Rk  n, R j R k  ~-1 and RjmRk  ~-m, m > 1, are respectively 
- -u i ( - -u  e) -n-l, --(--uk) -n and 0, n = 1,2, 3 . . . . .  As well as those opera- 
tions given in Table 1 some other operations can be treated as elementary 
operations in the sense that  they are connected with a single local error. 
For instance, if Q t ( u j , u k ) = l n ( u s )  then the coefficient of Ri~ in (7), 
n =  1 ,2 ,3 , . . . ,  is - ( -u~)  -n.  

Expressions similar to those for R t can also be otained for R i and R~ 
in terms of rj, r k and the accumulated rounding errors of the operands 
which produced u I and u k. Since R i = r t for an initial value ut, the follow- 
ing expansion is obtained for the accumulated rounding error R i after 
a finite number of steps: 

(8) R t  = ~/p=1 ci.~r~ + ~,p=1"i ~,~=i ct.~qr~rq+O(ra) 

where the c's are some scalar coefficients and O(r a) stands for terms of 
the ~hird and higher orders with respect to the r's. 

The expansion (8) is given in terms of the aboslute errors r~. Naturally, 
a corresponding expansion exists in terms of the relative errors. Below 
we analyze the relationship between the coefficients of these two expan- 
sions. 

Formulae (3) and (4) imply ~ = r J ( u i ' - r ~ ) .  Hence, since according to 
, i (8) ui can be written as u ¢ + ~ , p = l c c v r v + O ( #  ), 

On substitution into (8) this yields 



TAYLOR EXPANSION OF THE ACCUMULATED ROUNDING ERROR 149 

(9) R i  = 

As can be seen, for coefficients of the first order only a simple modifica- 
tion is needed when relative errors are used rather than absolute ones. 
The connection between the coefficients becomes more complicated the 
higher the order. The following is restricted to the consideration of abso- 
lute errors. 

I t  is worth noting that  if % is an initial value, then the coefficient 
ci. v in (8) is not  dependent on the algebraic sequence which has been 
used to produce u e In fact, due to the linearity of (3), each coefficient 
ci. p is the partial derivative of u i with respect to %.  More generally, 
the coefficien~ c o f  r p ~ r ~ . . ,  rp= in (8), where u v ~ . . . .  ,%m are initial 
values, is equal to 

(10) c = (~1! nz!.., n,n!)-xOn~+n~+'"+n~ut/OU$~aOu$2~... ~u~. 
For example, if w = u S -  v ~, then the coefficients of r(u)  and r(u)  2 in the  
expansion (8) of R ( w )  are 2u and 1, respectively, independent of whether 
w is computed by  (u × u ) -  (v × v) or by  (u + v ) ×  ( u - v ) .  

If  we denote the sum of the nth order terms in (8) by  R~ (~) then (8) 
can be wri t ten as 
(11) R~ = ~ : 1  Ri <~)" 

Correspondingly, (7) can be fractioned in the following parts:  

(12a) Rta) = r i + d i . j R S X ) + d t . ~ R k  (I) , 

(12b) Rt(2) = di.tRS2) + di .kRk (2) + di.ii(Rf(1)) 2 + di.ikRh(1)Rk (1) "4- di.kk(Rk(1)) 2 , 

As wilt be seen in the following sections, the formulae (12) can be used 
effectively in the determination of the coefficients c of (8). 

3. The analytic determination of the Taylor coefficients. 

For fairly simple algorithms the coefficients of (8) can be determined 
analytically using the recursion formula (7). This yields a difference 
equat ion which can be solved if it is not too complicated [1]. As an ex- 
ample, consider the calculation of the value of a polynomial using Her-  
her's scheme. 

The value of the polynomial 

(13)  w n = ao x n  + a l x  n-1 + . . .  + a,~ 

is computed using Homer ' s  scheme as 



150 SEPPO LINNAINMA-A 

(14) / Wo = ao '  

I v i = x × w i _ x ,  uk = a l + v i ,  i = 1  . . . . .  n .  

The application of (12) to (14) yields 

(15a) 
(15b) 
(15c) 

{ R(w0)(~) = r(wo) + r(ao) + r(Vo), 
R(vi)(1) = r(vi) -~ Wi_lR(X)(1) ~- zR(wt_ l )  (1) , 

R(wi)(1) = r(wi) + R(at) (1) + R(vi) (1) , 

where the zero-valued rounding errors r(Wo) and r(vo) are included for 
simplifying indexing in the following formulae. Since x and the coeffi- 
cients a i are initial values we have R(x)(1)=r(x)  and R(at)(1)=r(at),  
i = O  . . . .  ,n.  Thus, substituting (15b) for (15c) we obtain the difference 
equation 
(16) R(wi)a) = r(wt) + r(at) + r(vi) + wi_lr (x  ) + xR(wi_ l )  (1) 

with the initial condition R(wo)(1) = r(Wo) + r(ao) + r(Vo). The solution of (I 6) 
is 
(17) R(w~)(~) = Z~=oX'-~(r(wj)+r(a~)+r(vj))+~=l z ' - % _ l r ( z ) ,  

i = O , .  . . , n  . 

From (14) 

(18) wi = ~j=0 atxi-J 

and thus (17) may be writ ten as 

(19) R(wl )  (x) = ~'=0 xi-J(r(wj) + r(a¢) + r(vj)) + ~ : ~  ( i - j ) % . ~ i - i - l r ( x ) .  

In  particular, the coefficient of r(x) is seen to be equal to dwn/dx  when 
i = n  and w n is as in (13). This is in accordance with (10). 

The higher order terms of the Taylor expansion can be determined in 
a similar way. Utilizing (12) the formulae 

[ R(wo)(~) = O, 
(20) /~ R(vt)(m) wi-lR(x)(m) + xR(wt-1)(m) -t- ~p__-i R(x)(P).R(Wi_l)(m-~) , 

| R(wt)(m) R(ai)(m) + R(vi)(m), m > 1 , 

are obtained for the mth order terms. Since x and the ai's are initial 
values, R(x)(m)=R(at)(m)=O, i = 0  . . . .  ,n, for m >  1. Thus the difference 
equation 
(21) R(wi)  (m) = xR(wi_ l )  (m) + r (x)R(wf_i )  (m-l) 

is obtained with the initial condition R(w0)(~)= 0. The solution of (21) is 

(22) R(wi)  (m) = ~ip= 1 xl -Pr(x)R(w~_l)  (m-l), i = 1,. . . ,  n . 

With the aid of (19) and (18), the recursive use of (22) yields 



T A Y L O R  E X P A N S I O N  O F  T H E  A C C U M U L A T E D  R O U N D I N G  E R R O R  1 5 1  

(23) R(wi)(ra) = ~ - ~ + 1  [ i - p  ~ x~_p_m+lfr(w ) + r(a~)+ r(vp))r(x) ~ - I  

(:) q_ i - m  ~ - -  ~p=0 apx~-p-mr(x) ~, n > 1, i = O , . . . , n .  

The highest order non-zero term of R(w~) ,  n > O, is r(ao)r(x) ~. 
The above example shows how formula (7) can be used to determine 

the Taylor coefficients analytically. In the special case of Homer ' s  
scheme these coefficients can in fact be derived in a far simpler way. 
Directly from (10) and (18) it follows that  the coefficient of r(x) m in the 
Taylor expansion of w e is equal to 

= ~ p = o ~  m ] ~ m = l  . . . . .  i ,  

and the coefficient of r (%)r (x )  m-l,  p =  0 , . . .  , i -  1, m =  1 . . . .  ,i ,  is equal to 

O/(m-  1)!) = { i - p  
\ m - l ]  

agreeing with the coefficients given in (23). Further, the coefficients of 
r(a~)qr(x) ~ are obviously zero when q > 1, and (20) clearly indicates that  
the coefficients of r(w~)r(x)  m and r(v~)r(x) m are equal to the coefficient 
of r(a~)r(x) m. 

4. The algorithmic determination of the Taylor coefficients. 

The algorithmic a posteriori determination of the coefficients c of (8) 
is based on the same principles as the analytic determination. When the 
first order coefficients of R n are determined, the process proceeds in n 
cycles. Auxiliary eoefficents %Ei~, p = 1 . . . .  ,n, are computed during the 
( n -  i)th cycle. These coefficients are determined so that  the identity 

remains true throughout the execution of the determination process. 
Initially, i.e. with n - i = O ,  this is established by  setting Cn[n]=l , 

%E~] = O, p 4:n, from which the trivial identi ty R~(1)=R~ (1) follows. Gen- 
erally, suppose that  (24) is true after the ( n - i ) t h  cycle, i = n, n -  1 , . . . ,  1, 
and that  the operands producing u~ were uj and u k. Then substituting 
(12a) for (24) yields 

Rn(1) i -  I c EtJd. R.(1) + c t~]d R (1) + .~n cpE~]r~, = ~p=lVla[iJ~la(1)q-ci[ i]r i  q- t ~.J 3 i i .k k / - - p = i + l  " 

Setting c y  -~] , -  c~ ~] + c~rt]d~.j, ckE~-l] , -  Ckti~ + ciE~]di, k and letting the other 



152 SEPPO LINNAINMAA 

%~i-iJ's be identical to the corresponding %~t]'s, it is seen that  (24) remains 
true after the ( n - i +  1)'th cycle. Finally, after the nth cycle, the coeffi- 
cient %~0] is obviously identical with the Taylor coefficient cn.v, p = 1 . . . . .  n 
due to the uniqueness of the Taylor expansion. 

The determination of the coefficients declared above req t~es  informa- 
tion to be saved from each operation. The amount of this information 
is so great that  details of the actual use of computer storage have been 
included in the algorithmic presentation of the process described above. 
This is to show that  external files can be used in saving the extra informa- 
tion instead of the main storage, thus permitting the consideration of 
large numerical processes [6]. 

Each number u~ is saved as the contents of a computer storage cell 
z I e (zt, z 2 . . . . .  zm}. The contents may  be changed one or more times 
during the computing process. In  computer programming, the operation 
producing % is denoted by referring to the cells z i and z k which contain 
the associated operands. The execution of Algorithm iv (given below) 
presupposes that  on each such operation the indices i, j and k as well as 
the partial derivatives of the result u v (saved in zi; note that  in Algo- 
r i thm iv i, j and k are indices of storage cells, not subscripts of numbers 
as in (24)) with respect to the operands (contained in zj and %) are saved 
respectively as the values of I[i~], J[~P], Kip], Dj[p] and Dk[p]. I ,  J ,  K ,  
Dj  and Dk are tables placed in an external file. In  cases where only one 
operand exists or where there are no operands, the corresponding values 
of Dj[p] and Dk[p] are set to zero. When the value u n has been computed, 
its Taylor coefficients can be determined using Algorithm T, which util- 
izes the contents of the previously mentioned tables in reverse order. 

Algorithm T (Determination of the first order coefficients of the Taylor 
expansion of the accumulated rounding errors). Initially the table ele- 
ments I[p], J[p], K[p], Dj[p] and Dk[p], p = 1 , . . .  ,n, contain respectively 
the indices of the computer storage cells in which each number u~ be- 
longing to the actual computing process has been saved together with 
the values of its first and second operands, and the first order partial 
derivatives of u~ with respect to these operands. The algorithm produces 
the first order coefficients c~.~ of the Taylor expansion of the accumulated 
rounding error of u~. I t  is assumed that  u n is the contents of z N when the 
algorithm iv is called, and that  m computer storage cells zl, z 2 . . . . .  zm 
have been utilized during the numerical process. Algorithm T utilizes 
also the table C[1] , . . . ,  C[m] for saving the values of the requisite coeffi- 
cients of (24); the value of %E~] is saved in C[I[p]]. 



TAYLOR EXPANSION OF THE ACCUMULATED ROUNDING ERROR 153 

T1. [Initialize.] p ~ n ,  C[i] ~- 0 for i = 1  . . . .  ,m, i 4 N ,  C[N] ~- 1. 
T2. [Read.] i I[p], j J[p], k Kip], dj Dj[p], 
T3. [Coefficient cn. ~ completed.] eoef ~-C[i], C[i] ~ O. The contents 

of coef is now equal to the value of %.p and can be utilized. 
T4. [Coefficient zero ?] If  coef = 0, go to step T6. 
T5. [Update table C.] If  dj 4 0 then C[j] <-- C[j] + coef × dj. If d/c 4 0 

then C[k] ~ C[/c] + coef x d/c. 
T6. [Decrease p.] Decrease p by  1. If  p > 0, return to step T2, other- 

wise the algorithm terminates. 

I t  should be noted that  Algorithm T in fact uses the rounded numbers 
up' instead of the numbers up in actual computing. Rounding errors also 
occur in the computation of Algorithm T itself. 

Instead of the values Dj[p] and D/tip], the preceding contents of z i 
a~nd the type  of the operation producing % may be saved. If  this is done 
Algorithm T must be modified so that  the table Z[1] , . . .  ,Z[m] initially 
contains the final values of zl . . . .  ,z m. In step T2 the modified informa- 
tion is read, the value of Z[i] being replaced b y  the ,,preceding" contents 
of z~. The values of dj and die are then computed utilizing Table 1, the 
type  of the operation just  read, and the contents of Z[j] and Z[k] re- 
spectively as the values of uj and u k. No other changes are required. 

Coefficients of higher orders can also be determined algorithmically, 
bu t  the required algorithm becomes more complicated and wasteful of 
storage the higher the order. For instance, for the second order coeffi- 
cients the equation corresponding to (24) is 

c [i]R (3) _~ K'i "Vp h[~]RJ~)Rq(~) (25) Rn(2) -~ ~ p = l  p p ~ p = l  /-.-q=l 

+ ~ n  ~ i  h[i]~ R ( D ~ - ~  n ~-~=i+1 h[i]~ ~ 
J.~p=i+ 1 ~ q =  1 "~pq" 1 ~ q  -- ~ p = i +  1 --pq" p - q "  

Clearly an algorithm for computing the second order terms is essentially 
more complicated than Algorithm T. If, for simplicity, each u i is sup- 
posed to be located in a separate cell, then the unoptimized Algorithm 
S given below is obtained. 

Algorithm S (Determination of the first and second order Taylor 
coefficients). Init ially the table elements U[i], J[i], K[i] and Q[i], 
i =  1 , . . .  ,n, contain respectively the indices of the first and second 
operands of u i, the values of u~ and the type of the operation which 
produced u~. The algorithm produces the first and second order coeffi- 
cients c~. i and cn.~ of the Taylor expansion of the accumulated error 
of un. Algorithm S utilizes tables C[i] and H[i,j], i = 1, . . . .  n, j = 1 . . . .  ,i, 
for saving the values o~ the coefficients of (25): When the algorithm 



154 SEPPO LINNAINMAA 

terminates, C[i] contains the eoefficien~ cn. i and H[i,j] the coefficient 
c~.ii, i =  1 . . . .  ,n, j =  1 . . . . .  i. Note that  H is a lower triangular matrix. 
Due to the simplified formal presentation, in the following algorithm 
the ,,illegal" notation H[i,j] where i < j  actually refers to the element. 
H[j, i] .  

S1. [Initialize.] C[n] ~ 1, C[i] +- 0 for i = 1 . . . . .  n -  1, H[i,j] +- 0 for 
i = l , . . . , n ,  j = l  . . . . .  i, i + - n .  

$2. [Prepare for updating.] j ~ J[i], k ~ K[i]. Compute the values of 
dj, dk, djj, djlc and dkk representing respectively the entries di. j, 
di.k, di.~.~., di.ik and di.kk of Table 1, where the type  of the operation 
is given by  Q[i] and the values of u1 and u k are given respectively 
as the contents of U[j] and U[k]. 

$3. [Update the coefficients.] C[j] ~ C[j] + C[i] x dj, C[k] ~- C[k] + 
C[i] x dk  , 

H[j,s]  ~ H[j ,  s] + H[i, s] × dj, H[k,s] +- H[tc, s] + H[i,s] × dk for 
s = l  . . . . .  n, s 4 i ,  
H[j , j ]  ~ H[j , j]  + C[i] × djj + H[i,i] × dj × dj , 
H[k,  lz] ~ H[k,  k] + C5] × dklc + H[i,i] × dlc × dk , 
H[j ,  k] ~- H[j ,  k] + C[i] × djk + 2 × H[i,i] × dj × dk , 
H[i,j] +- H[i,j] + 2 × H[i, i] × dj, H[i, k] ~ H[i, k] + 2 x H[i, i] × dk . 

$4. [Decrease i.] Decrease i by  1. If  i > 0, return to step $2, otherwise 
the algorithm terminates. 

5. Storage and time requirements for the algorithmic determination 
of the Taylor coefficients. 

5.1. Storage requirements. 

As found in section 4, the execution of Algorithm T for determining 
the first order coefficients presupposes that  five numbers are saved for 
each of the n operations of the computing process. External  storage can 
be used for this purpose, and it may be of serial access type  provided 
that  it can be read in reverse order. 

Additionally, m main storage cells are needed for saving the requisite 
coefficients of (24), m being the number of main storage cells utilized by  
the actual computing process. The number of auxiliary variables is quite 
negligible, and thus the execution of Algorithm T requires roughly 5n 
external and m internal storage cells. Usually the computing process does 
not utilize m consequtive indexed cells z i. Thus m additional "refer- 
ence cells" are required for an implementation using a high-level lan- 
guage, each containing the "index" of a variable [4]. The modifica¢ion 



TAYLOR EXPANSION OF THE ACCUMULATED ROUNDING ERROR 155  

mentioned after Algorithm T requires a further m internal storage cells. 
If  the n completed coefficients are to be saved, n more cells are required. 
Through packing more than one information unit  in each cell more 
effective storage use can be obtained, but  the order of magnitude re- 
mains unchanged. 

In many applications, e.g. in approximating the mean value and 
standard deviation of the accumulated rounding error [3], [4], some 
function of the Taylor coefficients is required rather than the coefficients 
themselves. In such cases the extra storage required can be reduced to 
some extent. Possibilities for doing this are analyzed in section 6. 

When the coefficients ci. v are required only for some fixed p, expres- 
sing the effect of a single local error ~ on the values ut, then (8) has 
only one term. Obviously (12a) can then be applied simultaneously with 
the computing process, and only m extra storage cells are required for 
saving the coefficients. 

If coefficients of second and higher orders are required then the need 
for external storage is not increased, but  for the computation of the 
hth order coefficients the number of main st~)rage cells required is roughly 
proportional to mn ~-I. Simplified algorithms such as Algorithm S have 
a requirement for main storage cells which is roughly proportional to n h. 

5.2. Time  requirements. 

For use in analyzing the time required for the execution of Algorithm 
T, the arithmetic operations required to compute the first order partial  
derivatives, given in Table 1, are listed in Table 2. Account is taken of 
the fact that  - u i / u k ~ = - d t .  j × u i. The arithmetic operations executed 
for each original operation during steps T5 and T6 of Algorithm T are 
also listed, noting specifically the special cases where the absolute value 
of a partial derivative is equal to 1. 

Table 2. The number of arithmetic operations required in the execution of 

Algorithm T,  when the ones of Table 1 are utilized in step T5.  

Q~(uj,u~) partial deriv, add. step T5 step T6 
neg. mult. d_iv. sub. mult,, sub. 

uj + u~ 

u s --u~ 
u~ x u~ 

uslu~ 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 1 1 

0 1 0 
2 0 0 
1 1 0 
2 0 2 
2 0 2 



156 SEPPO LINNAINMAA 

On the basis of Table 2, noting the possible jump directly from step T4 
to T6, Algorithm T raight be expected to be quite effective. Unfortun- 
ately the work is not restricted to arithmetic operations. As noted in 
[6], due to effective buffering the time required by  I / 0  operations is 
not dominant, but  there also exist numerous logical operations, replace- 
ment operations, and index determinations and searches. Thus the fol- 
lowing experimental result is not surprising. Algorithm T was program- 
med for a Burroughs B6700 computer using Algol. The value of a thou- 
sandth degree polynomial with randomly chosen coefficients was com- 
puted using Homer ' s  scheme, both with and without determination of 
the first order Taylor coefficients. The ratio between the times was 
about  20. Possibly by  using a lower level language this ratio could be 
halved. In most applications the ratio would also be lower, since arith- 
metic floating-point operations are not generally as dominant. 

As is clearly seen from Table 2, if Algorithm T is used to obtain the 
Taylor coefficients of several intermediate values of the same computing 
process, then it is more time-effective to compute the partial derivatives 
during the process as proposed than to include their computation in 
Algorithm ~/' as done in the modification mentioned after Algorithm T. 
This is especially true when division occurs frequently, since the deriva- 
tives must  then be actually computed rather than merely found from 
a table. 

6. T h e  c o m p u t i n g  p r o c e s s  as  a graph. 

Any  computing process can be represented as a directed graph in 
which each vertex is associated with a number belonging to the process. 
Below the vertex associated with number ui will be called the vertex ui. 
An arc exists from u i to u i if and only if u1 is an operand of the operation 
which produces u t. In  particular, if ui is an initial value then no arcs 
lead to the vertex u i. Obviously the graph grows as the computing 
process proceeds. A characteristic feature of the graph of any computing 
process is that  it contains no oriented cycles. 

Each arc (from uj to ut) is associated with a number dt. i as defined 
in (7), which may  be called the value of the arc*. Thus the graph con- 
rains the information required by  Algorithm T. If  m oriented (non-iden- 
tical) paths exist from u z to u~ and the pth path is (u0(~) ,ul(p) , u(~)~ • • • ,  n ~ g / ,  

where UoC")= u~, un~P)= u~, then the coefficient ci. z of (8) can be expressed as 

• I f  bo th  operaads  (W and  u~) producing ui are the  same  n u m b e r  t hen  W and  u k are 
the  same ver tex,  b u t  f~he values  (d4j and  d~.~) of the  two arcs leading f rom this  ve r tex  to 

u~ are in general different. 



TAYLOR EXPANSION OF THE ACCUMULATED ROUNDING ERROR 157 

[ ~ m  "l-[np d(P) i #: 1 
(26) el, = / ?  i=l,' 

where ~(P) denotes the value of the are from u (p) ÷~ uq (v). For example, ~q.q-1 q-1  ~t, 
in the graph illustrated in Figure 1 ca. 1 = d4.2d2.1 + d4.J~.l + da.ads.2d2, r The 
graph is produced e.g. by the algorithm u ~ - u o + u l ,  ua +-u2/ul ,  

u 4 + - u a - u  ~, which can be programmed as z :=  x + y ;  z :=  z - ( z / y ) ,  

where the values of the variables x and y are respectively u o and u I and 
the final value of z is u 4. 

d3.2 ~3  

F igu re  I. A c o m p u t i n g  process  as  a g r aph .  

As noted in the preceding section, in many applications a weighted 
sum of the hth power of the ci.r's , 

( 2 7 )  = 

where each weight sp is a property connected with the number up, is 
required rather ~han the coefficients ci. p themselves. Such applications 
are the estimation of the expected value and variance of the accumulated 
rounding error, which can be estimated respectively with h =  1, sp =E(rv) 
and h =  2, s~ =D2(r~),  p =  1 . . . . .  i, where E(rp)  is the expected value and 
D~(rv) the variance of the local error r v [1]. Naturally the question arises 
of whether it is necessary to save all the information to enable the re- 
construction of the graph (as required by Algorithm T) when only the 
sum (27) is needed. This question is analyzed below. 

At any given phase of a computing process each vertex u I of the cor- 
responding graph is either active or inactive,  i.e. the number u i may or 
may not appear as an operand in the remaining operations of the process. 
In  practice the inactivity of u¢ means tha t  u i is no longer saved as the 
contents of a cell in the main storage. When a vertex has been inactiv- 

BIT 16 - -  11 



158 SEPPO LINI%AINMAA 

ated (by changing the contents of a cell) it can not be reactivated during 
the remainder of the process. 

In particular, if h =  1 in (27) then it follows from the linearity tha t  
for every vertex u I which has no arcs leading to it each d~.j in the graph 
may be replaced by zero (and thus the are from ~tj to u t eliminated), 
provided that  the value s t is simultaneously replaced by s i + di . is  j .  Also 
each inactive vertex may be eliminated as soon as it is neither an initial 
nor a final vertex of any  arc. Using these rules it  is unnecessary to save 
the actual graph in order to compute Si; Si may instead be computed 
simultaneously with the computing process itself. The expression (27) 
then holds for the reduced graph, and thus S ~ = s ~  when no more arcs 
leading to ui arc left. 

When h~: 1 the rules for eliminating parts of the graph are not as 
powerful. However, on the basis of the distributive law, three reduction 
rules exist such that  (27) remains true for all values of h. 

1. I f  several arcs lead from u s to u i, they can be replaced by a single 
are whose value d~.j is the sum of the values of the original arcs. 

2. I f  an inactive vertex %. has exactly one arc leading from it, say to 
ut, then this are and the vertex u i can be eliminated provided tha t  s~ 
is simultaneously replaced by s~ + sjdi . /~ and each arc leading to u j ,  say 
from u k, is replaced by an arc leading from u k to u~ and having the 
value di. ~ <- d t . jd j ,  k. 

3. If  an inactive vertex has no arcs leading from it then it can be 
eliminated together with any arcs leading to it, since they can no more 
be used in (27). 

The coefficients ci.p are unchanged by the reduction process and can 
be determined using (26). If Algorithm T is to be used, it must  be modi- 
fied in an obvious way, since there may now be several arcs leading to u t 
instead of the two identified by J [ i ]  and K [ i ]  in Algorithm T. 

Clearly the reduction rules given above do not lead to a complete 
reduction of the graph as in the case h = 1. To illustrate the reduction 
achived three applications are given: 

1. I f  the vertices ue and u s in Figure 1 are inactive (as they are e.g. 
after executing the statements z : =  x + y ;  z : = z - ( z / y ) ) ,  then reduction 
gives the graph shown in Figure 2, in which 

d4.1 : (g4 2 ~- d4 3d3 2)d21 "~ d4 3d31 = c4.1 . . . . . .  

d'4. o = c~. o = (d4. 2 + d4.ad~.2)d2.o , 

s4'  = s~ + s3d~.~ + s~(d4.2 + d4.3d3.2) h , 

80" ~ 80 a n d  82 t = 81 . 



TAYLOR EXPANSION OF THE ACCUMULATED ROUNDING ERROR 159 

U4 

Figure 2. A reduced graph. 

2. The original graph of Homer ' s  scheme for computing the value of 
an nth degree polynomial contains 3n + 3 vertices (including those for 
the n +  2 initial values) and 4n + 1 arcs. When the reduction rules are 
applied as soon as possible during the process, the maximum size of the 
graph is reduced to n +  4 vertices and 3 arcs, i.e. only 2 vertices are 
needed in addition to the initial values, whatever the value of n. Thus 
the storage requirement remains proportional to the number of variables, 
and not to the number of operations as with the unreduced graph. 

3. Suppose a linear system of m equations Axt=f~,  i =  1 , . . .  ,m, where 
A is a square matrix of order n is solved using Gaussian elimination. 
Then the corresponding unreduced graph contains 2hal3 + n 2 1 2 - n / 6  + 
m × (2n ~) vertices (including those for the n ~ + m n  initial values) and 
4n3/3 - n ~ - n/3 + m × (4n ~ - 2n) ares. When the reduction rules are ap- 
plied during the process, the maximum size of the graph obtained is 
n ~ + 2 + m × ( n ~ + 2 n + l )  vertices and 2 n a / 3 - n ~ / 2 - n / 6 + m × ( 2 n ~ - 2 )  
arcs. Thus the extra storage required can be roughly halved, but  its 
magnitude is still proportional to the number of operations rather than 
to the number of variables. 

7.  Conclusions .  

Both analytic and algorithmic methods of computing the coefficients of 
the Taylor expansion, especially the first and second order coefficients, 
have been considered. The algorithmic methods especially provide a 
convenient means of analyzing the effect of local errors upon the accu- 
mulated error. Analysis of the storage and time requirements shows that  
the methods are efficient enough to be used for testing the numerical 
stabil i ty of numerical algorithms, but  their use would hardly be justi- 
fied for continuous estimation of the behavior of rounding errors in rou- 
tine computing processes, due principally to the large external storage 
requirement. 



160 SEPPO LINNAINMAA 

The method for computing the first order coefficients can easily be 
combined with estimates for the statistical behavior of the local rounding 
errors [3], thus providing an easy way of obtaining automatic estimates 
of the statistical behavior of accumulated rounding errors [1], [4]. Some 
experimental results obtained using this method are presented in [3] 
and [4]. 

Another use of the coefficients is for determining the most critical 
steps of a process, due to the information obtained regarding which local 
errors have the greatest effect upon the accumulated error of the result- 
ing value. 

Acknowledgements.  

I am grateful to Professor Martti Tienari for his stimulating advice 
during the development of the present methods. Thanks are also due to 
Mr. Esko Ukkonen, M.Sc., with whom I have had valuable discussions. 
The language of this article was checked by Mr. Frank Beaver. 

REFERENCES 

I. P. IIenrici, Elements of numerical analysis, Ch. 16, Wiley, New York, 1964. 
2. S. Linnainmaa, Th~ representation o.f the cumulative rounding error of an algorithm as a 

Taylor expansion of the local rounding errors, (In Finnish), Master's Thesis, Depart- 
ment of Computer Science, University of Helsinki, Helsinki, Finland, 1970. 

3. S. Linnainmaa, Towards accurate statis~cal estimation of rounding errors in floating.point 
computations, BIT 15 (1975), 165-173. 

4. S. Linnainmaa, A set of ALGOL procedures for analyzing the behavior of rounding errors 
in floating-point computations, Report A-1975.2, Department of Computer Science, 
University o3 Helsinki, HeIsinki, Finland. 

5. M. Tienari, A statistical model of roundoff errors for varying length floating-point arith- 
metic, BIT 10 (1970), 355-365. 

6. M. Tienari, On some topological properties of numerical algorithms, BIT 12 (1972), 409- 
433. 

DEPARTMENT OF COMPUTER SCIENCE 

UNIVERSITY OF HELSINKI 

T~L~NKATU 11 

SF-00100 HELSI~-KI 10 
FII~LAND 


