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a b s t r a c t

This article presents YAGO, a large ontology with high coverage and precision. YAGO has been automat-
ically derived from Wikipedia and WordNet. It comprises entities and relations, and currently contains
more than 1.7 million entities and 15 million facts. These include the taxonomic Is-A hierarchy as well as
semantic relations between entities. The facts for YAGO have been extracted from the category system
and the infoboxes of Wikipedia and have been combined with taxonomic relations from WordNet. Type
Ontologies
Information extraction
K

checking techniques help us keep YAGO’s precision at 95%—as proven by an extensive evaluation study.
YAGO is based on a clean logical model with a decidable consistency. Furthermore, it allows representing
n-ary relations in a natural way while maintaining compatibility with RDFS. A powerful query model
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nowledge representation
facilitates access to YAGO’

. Introduction

Many applications in modern information technology uti-
ize ontological background knowledge. This applies not only
o applications in the vision of the Semantic Web, but also to
umerous other application fields: machine translation [14] and
ord sense disambiguation [10] exploit lexical knowledge, query

xpansion uses taxonomies [34,27,52], document classification
s combined with ontologies [30], and question answering and
nformation retrieval [29] also rely on background knowledge.
urthermore, ontological knowledge structures play an important
ole in data cleaning [15], record linkage (entity resolution) [17],
nd information integration in general [40]. In addition, there are
merging trends towards entity- and fact-oriented Web search
nd community management [6,12,13,16,20,32,35,37,38], which
an build on rich knowledge bases.

But the existing applications typically use only a single source of
ackground knowledge (mostly WordNet [26] or Wikipedia). They
ould boost their performance, if a huge ontology with knowledge
rom several sources were available. Such an ontology would have
o be of high quality, with accuracy close to 100%, i.e. comparable in

uality to an encyclopedia. It would have to comprise not only con-
epts in the style of WordNet, but also named entities like people,
rganizations, geographic locations, books, songs, products, etc.,
nd also relations among these such as what-is-located-where,
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ho-was-born-when, who-has-won-which-prize, etc.1 It would
ave to be easily re-usable and application-independent. If such an
ntology were available, it could boost the performance of existing
pplications and also open up the path towards new applications
n the Semantic Web era.

.1. Related work

Knowledge representation is an old field in AI and has provided
umerous models from frames and KL-ONE to recent variants of
escription logics and RDFS and OWL (see [45,47]). Numerous
pproaches have been proposed to create general-purpose ontolo-
ies on top of these representations. One class of approaches
ocuses on extracting knowledge structures automatically from
ext corpora. These approaches use information extraction tech-
ologies that include pattern matching, natural-language parsing,
nd statistical learning [49,25,11,1,46,41,18]. These techniques have
lso been used to extend WordNet by Wikipedia individuals [44].
wo important projects along these lines are KnowItAll [25] and
extRunner [4]. KnowItAll aimed at extracting and compiling
nstances of a given set of uniary and binary predicate instances on
very large scale, e.g. as many soccer players as possible or almost
ll company/CEO pairs from the business world. TextRunner has the

ven more ambitious goal of extracting all instances of all mean-
ngful relations from Web pages, a paradigm referred to as machine
eading [24]. Recently this approach has been further extended to
nclude even lifelong learning, by using the already compiled knowl-

1 In this article, we mean by “ontology” as any set of facts and/or axioms, com-
rising potentially both individuals and concepts.
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dge to drive the strategies for acquiring new facts [5]. Although
utomatic knowledge acquisition of this kind often exhibits results
f remarkable accuracy, the quality is still significantly below that
f a hand-crafted knowledge base. Furthermore, these systems
xtract facts in a non-canonical form. This means that different
dentifiers are used for the same entity and there exist no clearly
efined relations. As a result, no explicit (logic-based) knowledge
epresentation model is available. Thus, information-extraction
pproaches are still much more suitable for high coverage and less
ttractive for applications that need consistent ontologies (such as
igh-accuracy query processing, or even automated reasoning).

Similar observations hold for the recently popularized direction
f mining taxonomies and semantic relations from social-tagging
latforms such as del.icio.us and Web directories such as
moz.org (see, e.g. [22,31,23]). Notwithstanding the benefits of
hese approaches, the inherent noise and lack of explicit quality
ontrol for social tagging usually lead to poor precision.

Because of the quality bottleneck, the most successful and
idely employed ontologies are still man-made. These include
ordNet [26], Cyc or OpenCyc [36], SUMO [39], and especially

omain-specific ontologies and taxonomies such as UMLS2 or
he GeneOntology3. These knowledge sources have the advantage
f satisfying the highest quality expectations, because they are
anually assembled. However, they are costly to assemble and con-

inuous human effort is needed to keep them up to date. As a result,
o hand-crafted ontology knows the most recent Windows version
r the latest soccer star.

Lately, a new approach has entered the scene: community-based
ntology building. Inspired by Wikipedia, the Freebase project4

ims to construct an ontology by inviting volunteers to contribute
acts. The usefulness of this approach will depend on the acceptance
f the project by the community. Furthermore, effective ways of
nforcing uniformity across the ontology need to be found, as differ-
nt contributors may prefer different ways of modeling reality. The
emantic Wikipedia project [53] is a comparable initiative. It invites
ikipedia authors to add semantic tags to their articles in order

o turn the page link structure of Wikipedia into a huge seman-
ic network. Again, the usefulness of this approach will depend on
he acceptance of the project by the community and on finding
uccessful ways of quality control.

Finally, a recently emerging approach is to automatically derive
xplicit facts from the semi-structured part of Wikipedia. This
irection includes DBpedia [2], Isolde [54], the work of Ponzetto
t al. [43], KYLIN [55], and also our own YAGO project (with first
esults given in [51] and new techniques presented in this arti-
le). The DBpedia project was initially started by extracting facts
rom the infoboxes of particular types of Wikipedia articles (e.g. on
eople, cities, companies, music bands, etc.). In contrast to YAGO,
Bpedia does not use defined relations with ranges and domains.
ather, it uses the words from the infoboxes as relation names. This
ay, DBpedia can extract a wealth of facts from the infoboxes. As a
rawback, the same relationship may appear with different names
e.g. length, length-in-km, length-km). Thus, the consistency
nd accuracy of DBpedia are unknown. DBpedia uses YAGO as a
axonomic backbone to connect the facts to a coherent whole.

Ponzetto et al. use rich heuristics to derive a taxonomy from

ikipedia categories and links between them. Isolde extracts class

andidates from a specific domain corpus. It exploits Web sources
uch as Wikipedia and Wiktionary to derive additional knowledge
bout these candidates. Although both of these approaches pursue

2 http://umlsinfo.nlm.nih.gov.
3 http://www.geneontology.org.
4 http://www.freebase.com.
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imilar goals as YAGO, they lead to lower quality and more restricted
cope.

Finally, KYLIN starts out with extraction techniques on
nfoboxes, similar to those of DBpedia, but then uses powerful
earning techniques to automatically fill in missing values in incom-
lete infoboxes. The accuracy of the extraction is remarkable. Its
oal, however, is filling infoboxes rather than constructing an onto-
ogical knowledge base.

There is also a meta-approach to ontology construction: The
inking Open Data Project [8], launched by the W3C, aims to inter-
ink existing ontologies. It encourages people to make RDFS data
ets available online as Web services. On top of these Web services,
t establishes links between equivalent concepts in different data
ets. YAGO is already part of this initiative.

.2. Contributions and outline

We present the ontology YAGO,5 which combines high cover-
ge with high quality. Its core is assembled from one of the most
omprehensive lexicons available today, Wikipedia. But rather than
sing natural language processing on the articles of Wikipedia,
ur approach builds on Wikipedia’s infoboxes and category pages.
nfoboxes are standardized tables that contain basic information
bout the entity described in the article. For example, there are
nfoboxes for countries, which contain the native name of the coun-
ry, its capital and its size. As shown in [2], infoboxes are much
asier to parse and exploit than natural language text. Category
ages are lists of articles that belong to a specific category (e.g.
lvis is in the category of American rock singers). These lists give
s candidates for entities (e.g. Elvis) candidates for concepts (e.g.

sA(Elvis, rockSinger)) [33] and candidates for relations (e.g. nation-
lity(Elvis, American)). In an ontology, concepts have to be arranged
n a taxonomy to be of use. The Wikipedia categories are indeed
rranged in a hierarchy, but this hierarchy is barely useful for
ntological purposes. For example, Elvis is in the super-category
amed Grammy Awards, but Elvis is a Grammy Award winner and
ot a Grammy Award. WordNet, in contrast, provides a clean and
arefully assembled hierarchy of thousands of concepts. But the

ikipedia concepts have no obvious counterparts in WordNet.
We present techniques that link the two sources with high

ccuracy. To the best of our knowledge, our method is the first
pproach that accomplishes this unification between WordNet and
acts derived from Wikipedia with a precision of 95%. This allows
he YAGO ontology to profit, on one hand, from the vast amount
f individuals known to Wikipedia, while exploiting, on the other
and, the clean taxonomy of concepts from WordNet. Currently,
AGO contains roughly 1.7 million entities and 15 million facts
bout them.

We explain how we can enforce the high accuracy of our extrac-
ion heuristics through type checking. Type checking leverages the
nformation that has already been extracted to verify the plausi-
ility of newly extracted data. We show that type checking can be
sed both in a reductive fashion (eliminating facts that are implau-
ible) and in an inductive fashion (adding supplemental facts so that
he ontology becomes consistent). We have conducted an extensive
valuation study, which proves that YAGO has an overall precision
f 95%.
YAGO is based on a data model that slightly extends RDFS.
y means of reification (i.e. introducing identifiers for relation

nstances) we can express relations between facts (e.g. which facts
as found on which Web site), n-ary relations (e.g. that Elvis won

5 Yet another great ontology.

http://umlsinfo.nlm.nih.gov
http://www.geneontology.org
http://www.freebase.com
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he Grammy Award in 1967) and general properties of relations (e.g.
ransitivity or acyclicity). We show that, despite its expressiveness,
he YAGO data model is still decidable and maintains compatibil-
ty to RDFS. Furthermore, we present a query language as a natural
xtension of our data model, which allows querying reified facts.

YAGO was first presented in [51]. This article significally extends
he previous work by adding the exploitation of infoboxes, intro-
ucing quality control techniques and defining a new query

anguage. The rest of this article is organized as follows. In Section
, we introduce YAGO’s data model. Section 3 describes the sources
rom which the current YAGO is assembled, namely Wikipedia
nd WordNet. In Section 4, we explain the information extrac-
ion algorithms behind YAGO. Section 5 presents an evaluation, a
omparison to other ontologies, and sample queries on YAGO. We
onclude with a summary and an outlook in Section 6.

. The YAGO model

To accommodate the ontological data we already extracted and
o be prepared for future extensions, YAGO must be based on a thor-
ugh and expressive data model. The model must be able to express
ntities, facts, relations between facts and properties of relations.
he state-of-the-art formalism in knowledge representation is cur-
ently the Web Ontology Language OWL [47]. Its most expressive
ariant, OWL-full, can express properties of relations, but is unde-
idable. The weaker variants of OWL, OWL-lite and OWL-DL, cannot
xpress relations between facts. RDFS, the basis of OWL, can express
elations between facts, but provides only very primitive semantics.
or example, it does not know transitivity, which is crucial for par-
ial orders such as SUBCLASSOF or LOCATEDIN. This is why we introduce
slight extension of RDFS, the YAGO model. The YAGO model can

xpress relations between facts and relations, while being at the
ame time simple and decidable. We will first describe the YAGO
odel informally and then give a formal definition.

.1. Informal description

The YAGO model uses the same knowledge representation as
DFS: All objects (e.g. cities, people, even URLs) are represented as
ntities in the YAGO model. Two entities can stand in a relation. For
xample, to state that Elvis won a Grammy Award, we say that the
ntity Elvis Presley stands in the HASWONPRIZE relation with the
ntity Grammy Award. We write

lvisPresley HASWONPRIZE GrammyAward

umbers, dates, strings and other literals are represented as entities
s well. This means that they can stand in relations to other entities.
or example, to state that Elvis was born in 1935, we write:

lvisPresley BORNINYEAR 1935

ntities are abstract ontological objects, which are language-
ndependent in the ideal case. Language uses words to refer to these
ntities. Words are entities as well. This makes it possible to express
hat a certain word refers to a certain entity, like in the following
xample:

Elvis” MEANS ElvisPresley

his allows us to deal with synonymy and ambiguity. The following
ine says that “Elvis” may also refer to the English songwriter Elvis

ostello:

Elvis” MEANS ElvisCostello

e use quotes to distinguish words from other entities. Similar
ntities are grouped into classes. For example, the class singer

y
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omprises all singers and the class word comprises all words. Each
ntity is an instance of at least one class. We express this by the TYPE

elation:

lvisPresley TYPE singer

lasses are also entities. Thus, each class is itself an instance of a
lass, namely of the class class.6 Classes are arranged in a taxo-
omic hierarchy, expressed by the SUBCLASSOF relation:

inger SUBCLASSOF person

elations are entities as well. This makes it possible to represent
roperties of relations (like transitivity or subsumption) within the
odel. The following line, e.g. states that the SUBCLASSOF relation is

n acyclic transitive relation (atr):

ubclassOf TYPE atr

cyclic transitive relations are of particular importance to YAGO
ecause they are used to model partial orders such as SUBCLASSOF

nd LOCATEDIN. The triple of an entity, a relation and an entity is
alled a fact. The two entities are called the arguments of the fact.

In YAGO, we will store with each fact where it was found. For
his purpose, facts are given a fact identifier. Deviating from RDFS,
act identifiers are an integral part of the YAGO model. Each fact has
fact identifier. For example, suppose that the above fact (Elvis
resley, BORNINYEAR, 1935) had the fact identifier #1. Then the
ollowing line says that this fact was found in Wikipedia:

1 FOUNDIN Wikipedia

e will refer to entities that are neither facts nor relations as com-
on entities. Common entities that are not classes will be called

ndividuals.
In summary, a YAGO ontology is basically a function that maps

act identifiers to fact triples. More formally, a YAGO ontology can
e described as a reification graph.

.2. Reification graphs

A reification graph is defined over

a set of nodes N. In YAGO, these are the common entities.
a set of edge identifiers I. In YAGO, these are the fact identifiers.
a set of labels L. In YAGO, these are the relation names.

The reification graph is an injective total function

N,I,L : I → (N ∪ I) × L × (N ∪ I).

e call the range of this function the edges of the graph. Intuitively
peaking, the edges of a reification graph cannot only connect two
odes, but also a node and an edge or even two edges. Each edge

s unique and has an identifier from I. Furthermore, each edge has
label from L. Note that a reification graph of the form GN,I,L : I →
× L × N defines a usual directed multi-graph with nodes N and

abeled edges range(GN,I,L).
A YAGO ontology over a finite set of common entities C, a finite

et of relation names R and a finite set of fact identifiers I is a
eification graph over the set of nodes I ∪ C ∪ R and the set of labels
, i.e. an injective total function
: I → (I ∪ C ∪ R) × R × (I ∪ C ∪ R)

6 Classes should be thought of as abstract identifiers rather than sets.
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We write down a YAGO ontology (and in general any reification
raph) by listing the elements of the function in the form

id1 : arg11 rel1 arg21
id2 : arg12 rel2 arg22
. . .

o simplify, we will omit the fact identifier if it occurs nowhere
lse, assuming it to be an arbitrary fresh identifier. Furthermore,
e allow the following shorthand notation

d2 : (arg11 rel1 arg21) rel2 arg22

o mean

id1 : arg11 rel1 arg21
id2 : id1 rel2 arg22

here id1 is a fresh identifier. Assuming left-associativity, the nota-
ion can be further simplified to

d2 : arg11 rel1 arg21 rel2 arg22

or example, to state that Elvis’ birth date was found in Wikipedia,
e can simply write this fragment of the reification graph as

lvis BORNINYEAR 1935 FOUNDIN Wikipedia

.3. n-Ary relations

Some facts require more than two arguments (for example the
act that Elvis got the Grammy Award in 1967). One common way to
eal with this issue is to use n-ary relations (as for example in won-
rizeInYear(Elvis, GrammyAward, 1967)). RDFS and OWL do
ot allow n-ary relations. Therefore, the standard way to deal with
his problem in these formalisms is to introduce a new binary rela-
ion for each argument (e.g. WINNER, PRIZE, YEAR). Then, an n-ary fact
an be represented by a new event entity (say, elvisGetsGrammy)
hat is linked by these binary relations to all of its arguments:

GrammyAward PRIZE elvisGetsGrammy

Elvis WINNER elvisGetsGrammy

1921 YEAR elvisGetsGrammy

he YAGO model offers a more natural solution to this problem: It
s based on the assumption that for each n-ary relation, a p rimary
air of its arguments can be identified. For example, for the above
ONPRIZEINYEAR-relation, the pair of the person and the prize could
e considered a primary pair. The primary pair can be represented
s a binary fact with a fact identifier:

1 : Elvis HASWONPRIZE GrammyAward

ll other arguments can be represented as relations that hold
etween the primary fact and the other arguments:

2 : #1 INYEAR 1967

ith our simplified syntax, this can as well be written as

Elvis HASWONPRIZE GrammyAward

INYEAR 1967

.4. Semantics
This section gives a model-theoretic semantics to YAGO. We first
rescribe that the set of relation names R for any YAGO ontol-
gy must contain at least the relation names type, subClassOf,
omain, range and subRelationOf. The set of common entities
must contain at least the classes entity, class, relation and

o
W
→
e

Fig. 1. The YAGO literal classes.

tr (for acyclic transitive relation). Furthermore, it must contain
lasses for all literals as given in Fig. 1.

For the rest of the article, we assume a given set of common
ntities C and a given set of relations R. The set of fact identifiers
sed by a YAGO ontology y is implicitly given by I = domain(y). To
efine the semantics of a YAGO ontology, we consider the set of all
ossible facts F = (I ∪ C ∪ R) × R × (I ∪ C ∪ R). We define a rewrite
ystem →⊆ P(F) × P(F), i.e. → reduces one set of facts to another
et of facts. We use the shorthand notation {f1, . . . , fn} ↪→ f to say
hat

∪ {f1, . . . , fn} → F ∪ {f1, . . . , fn} ∪ {f }

or all F ⊆ F, i.e. if a set of facts contains the facts f1, . . . , fn, then
he rewrite rule adds f to this set. Our rewrite system contains the
ollowing (axiomatic) rules:

∅ ↪→ (domain,RANGE,class)
∅ ↪→ (domain,DOMAIN,relation)
∅ ↪→ (range,DOMAIN,relation)
∅ ↪→ (range,RANGE,class)
∅ ↪→ (subClassOf,TYPE,atr)
∅ ↪→ (subClassOf,DOMAIN,class)
∅ ↪→ (subClassOf,RANGE,class)
∅ ↪→ (type,RANGE,class)
∅ ↪→ (subRelationOf,TYPE,atr)
∅ ↪→ (subRelationOf,DOMAIN,relation)
∅ ↪→ (subRelationOf,RANGE,relation)

he first rule, e.g., says that the range of the relation DOMAIN is the
lass class, i.e. the second argument of a DOMAIN fact will always
e a class. In addition, the rewrite system contains for the literal
lasses the rules

↪→ (X ,SUBCLASSOF,Y)

or each edge X → Y in Fig. 1.
Furthermore, it contains the following rules for all

, r1, r2 ∈R, x, y, c, c1, c2 ∈ I ∪ C ∪ R, r1 /= TYPE, r2 /= SUBRELATIONOF,
/= SUBRELATIONOF, r /= TYPE, c /= atr, c2 /= atr:

1) {(r1,SUBRELATIONOF,r2), (x, r1, y)} ↪→ (x, r2, y)
2) {(r,TYPE,atr), (x, r, y), (y, r, z)} ↪→ (x, r, z)
3) {(r,DOMAIN,c), (x, r, y)} ↪→ (x,TYPE,c)
4) {(r,RANGE,c), (x, r, y)} ↪→ (y,TYPE,c)
5) {(x,TYPE,c1), (c1,SUBCLASSOF,c2)} ↪→ (x,TYPE,c2)

heorem 1 (Convergence of →). Given a set of facts F ⊂ F, the
argest set S with F→∗S is finite and unique.
The proof of Theorem 1 is given in the Appendix A. Given a YAGO
ntology y, the rules of → can be applied to its set of facts, range (y).
e call the largest set that can be produced by applying the rules of
the set of derivable facts of y, D(y). Two YAGO ontologies y1, y2 are

quivalent if the fact identifiers in y2 can be renamed by a bijective
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ubstitution so that

y1 ⊆ y2 ∨ y2 ⊆ y1) ∧ D(y1) = D(y2)

he deductive closure of a YAGO ontology y is computed by adding
he derivable facts to y. Each derivable fact (a, r, b) needs a new
act identifier, which is just fa,r,b. Using a relational notation for the
unction y, we can write this as

∗:=y ∪ {(fa,r,b, (a, r, b))|(a, r, b) ∈ D(y)/range(y)}
structure for a YAGO ontology y is a triple of

a set U (the universe)
a function D : I ∪ C ∪ R → U (the denotation)
a function E : D(R) → U × U (the extension function)

As in RDFS, a YAGO structure needs to define the extensions of
he relations by the extension function E. E maps the denotation of
relation symbol to a relation on universe elements. We define the

nterpretation � with respect to a structure 〈U,D, E〉 as the following
elation:

:={(e1, r, e2)|(D(e1),D(e2)) ∈ E(D(r))}
We say that a fact (e1, r, e2) is true in a structure, if it is contained

n the interpretation. A model of a YAGO ontology y is a structure
uch that

(i) all facts of y∗ are true in the structure
(ii) if �(x,TYPE,string) for some x, then D(x) = x
iii) if �(r,TYPE,atr) for some r, then there exists no x such that

�(x, r, x)

A YAGO ontology y is called consistent if there exists a model for
t. Obviously, a YAGO ontology is consistent if

/∃ x, r : (r,TYPE,atr) ∈ D(y) ∧ (x, r, x) ∈ D(y)

ince, by Theorem 1, the deductive closure of a YAGO ontology can
e computed by applying the rules (1)–(5) finitely often, we have
he following corollary of Theorem 1:

orollary 1 (Decidability). The consistency of a YAGO ontology is
ecidable.

A base of a YAGO ontology y is any equivalent YAGO ontology
with b ⊆ y. A canonical base of y is a base so that there exists no

ther base with less elements.

heorem 2 (Uniqueness of the canonical base). The canonical base
f a consistent YAGO ontology is unique.

The proof of Theorem 2 is given in the Appendix B. In fact, the
anonical base of a YAGO ontology can be computed by greed-
ly removing derivable facts from the ontology in any order. This

akes the canonical base a natural choice to efficiently store a YAGO
ntology.

.5. Reification and semantics

The YAGO model allows making statements about facts. How-
ver, it does not allow curtailing the validity of facts: A model for
he ontology must make every fact true, regardless of whether the
act is an argument of another fact. This has several consequences.

irst, it is not possible to state in YAGO that a certain fact is false.
n any case, YAGO does not provide the predefined vocabulary for
uch a statement and it would entail immediate undecidability. Sec-
nd, the primary pair of an n-ary relation will always be true in a
odel of the ontology. Consider, for example, the fact that Elvis was

t
a
a

i
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singer from 1950 to 1977. In the YAGO model, this fact could be
xpressed as

#1 : Elvis TYPE singer

#2 : #1 DURING 1950 − −1977

f the TYPE relation denotes the relation “x is a y”, then each model
ill contain the fact that Elvis is a singer—even though in the

ntended interpretation that holds only from 1950 to 1977. Thus,
more adequate denotation for the TYPE relation would actually be

x is or was a y”. Another consequence of the YAGO model is that
ntentional predicates like BELIEVESTHAT or SAYSTHAT are not possible,
ecause all arguments to these relations would become true in the
odel. It does, however, allow using success verbs such as SEESTHAT

r KNOWSTHAT, the arguments of which are true by intention.
These properties of the YAGO model may be considered limiting,

ut they guarantee the decidability of the model.

.6. Data types

The YAGO model treats literals (such as strings or numbers) as
roper entities. Literals are instances of literal classes (or data types).
DFS and OWL use the data types defined by XML Schema [7]. These
ata types, however, are more machine-oriented and not always
emantically plausible. For example, XML Schema does not know
he data type rationalNumber, but only the disjunct data types
loat and double. This is why the YAGO model comes with its
wn data types (see Fig. 1), which follow the SUMO ontology [39].
AGO sees, e.g. integer as a subclass of rational, because each

nteger number is a rational number. Besides numbers, YAGO also
nows strings. These are characterized by mapping to themselves
n any denotation. timeIntervals are specific periods of time, such
s the year 2007 or the 8th of January 1935.

The class quantity contains values that have a physical dimen-
ion such as length or weight. These values have units, such as
eter or kilogram. In RDFS, quantities are usually represented by

n anonymous entity (a blank node). This entity is connected by an
DF:VALUE edge to the numerical value and by a UNIT edge to the unit
f measurement, e.g. as follows:

: x RDF : VALUE 1000

: x UNIT gram

s a consequence, the very same quantity has to be represented as
wo blank nodes, if measured with two different units. The YAGO

odel, in contrast, can express that the very same quantity has two
ifferent values if measured in different units:

#1 : 1000g HASVALUE 1000

#2 : #1 INUNIT “gram”
#3 : 1000g HASVALUE 1

#4 : #3 INUNIT “kilogram”

In YAGO, we use the ISO units and formats both for the HASVALUE

acts and as quantity identifiers.

.7. Relation to other formalisms

The YAGO model is basically an extension of RDFS. It main-
ains the semantics of the RDFS relations DOMAIN, RANGE and TYPE.
t also maintains the RDFS relations SUBCLASSOF and SUBRELATIONOF

SUBPROPERTYOF in RDFS). However, the YAGO model adds acyclicity

o these relations. RDFS, in contrast, does not know the concept of
n acyclic relation. This entails that the relation ATR can be defined
nd used, but that RDFS would not know its semantics.

Another difference to RDFS, discussed in the preceding section,
s the use of semantic data types in YAGO.
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in texts and the actual senses of the words. A set of words that
share one sense is called a synset.7 Thus, each synset identifies
one sense (i.e. semantic concept). Words with multiple meanings
(ambiguous words) belong to multiple synsets. As of the current
08 F.M. Suchanek et al. / Web Semantics: Science, Servic

Just as RDFS, the YAGO model uses fact identifiers to express
acts about facts. In the YAGO model, fact identifiers are an inte-
ral part of the model. In RDFS, in contrast, fact identifiers are
onstructed by characterizing the fact through its relation and its
rguments. For example, to talk about the fact (Elvis, BORNINYEAR,
935), RDFS would create a new entity for the fact (say, elvisFact)
nd characterize it as follows:

elvisFact RDF : RELATION BORNINYEAR

elvisFact RDF : SUBJECT Elvis

elvisFact RDF : OBJECT 1935

elvisFact RDF : TYPE statement

his process is called reifying the fact. Then, elvisFact can be used
s an argument in other facts. Different from the YAGO model,
hough, the reified fact does not become part of the ontology – let
lone the model. In RDFS, arbitrary facts can be used as arguments,
ven ones that are false in the model.

Thus, to model YAGO’s reification, one would need to reify each
act of the ontology in the above manner so that each fact is present
oth in the ontology and as a reified fact. To simplify this process,
he XML syntax of RDFS allows triple identifiers. If a fact of the ontol-
gy is equipped with a triple identifier, that fact is automatically
eified. This allows us to map a YAGO ontology into RDFS. The fol-
owing excerpt shows how the sample fact of Section 2.3 can be
epresented in RDFS. Each fact of YAGO becomes a triple in RDFS
ith a triple identifier.

YAGO uses fact identifiers, but it does not have built-in relations
o make logical assertions about facts (e.g. it does not allow saying
hat a fact is false). If one relies on the denotation to map a fact
dentifier to the corresponding fact element in the universe, one
an consider fact identifiers as simple individuals. This abandons
he syntactic link between a fact identifier and the fact. In return,
t opens up the possibility of mapping a YAGO ontology to an OWL
ntology under certain conditions. OWL has built-in counterparts
or almost all built-in data types, classes, and relations of YAGO
The only concept that does not have an exact built-in counter-
art is ATR. However, this is about to change. OWL is currently being
efined to its successor, OWL 1.1 [42]. The extended description logic
ROIQ [28], which has been adopted as the logical basis of OWL 1.1,
llows expressing irreflexivity and transitivity. This allows defin-
ng acyclic transitivity, even though SUBCLASS OF and SUBPROPERTY OF

emain reflexive and transitive and hence not acyclic. We plan to
nvestigate the relation of YAGO and OWL, once OWL 1.1 has been
ully established.

.8. Query language
To demonstrate the use of YAGO, we present a query language
or reification graphs. A pattern for a reification graph GN,I,L over a
et of variables V, V ∩ (N ∪ I ∪ L) = ∅, is a reification graph over the
et of nodes N ∪ V , the set of identifiers I ∪ V and the set of labels
∪ V . In the following, we denote elements from V by symbols that

v

s
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arry a question mark (such as ?x). A matching of a pattern P for a
raph G is a substitution � : V → N ∪ I ∪ L, such that �(P) ⊂ G. �(P)
s called a match.

Our syntax simplifications from Section 2.2 can be transferred
o patterns: Each implicit fact identifier becomes a fresh variable.
hus, e.g. the query “When did Elvis win the Grammy Award?” can
e formulated as

Elvis HASWONPRIZE GrammyAward

INYEAR ?x

hich is shorthand for

?i1 : Elvis HASWONPRIZE GrammyAward

?i2 : ?i1 INYEAR ?x

A match of that pattern for the ontology would map the vari-
bles to entities such that the pattern becomes a subgraph of the
ntology.

Usually, each entity that appears in the query also has to appear
n the ontology. If that is not the case, there is no match. However,

e may want to allow a query such as “Which singers were born after
930?”, even if 1930 does not appear in the ontology. We cannot
imply add all existing literals to the YAGO ontology because a YAGO
ntology has to be finite. Hence, we introduce filter relations (such
s AFTER), which are not part of the match, but are evaluated on the
atch as filters. Technically, a filter relation is a decidable function

hat maps two literals to either 0 or 1. Then, a filter pattern P for
reification graph GN,I,R over a set of literals L, a set of variables
, V ∩ (N ∪ I ∪ R ∪ L) = ∅ and a set of filter relations F, is a reification
raph over the set of nodes N ∪ V ∪ L, the set of identifiers I ∪ V
nd the set of labels R ∪ V ∪ F . For example, the following is a filter
attern over the set of literals {1930} and the set of filter relations
AFTER}:

?i1 : ?x TYPE singer

?i2 : ?x BORNINYEAR ?y
?i3 : ?y AFTER 1930

matching for a filter pattern is a matching � for the pat-
ern P \ {(i, (a1, r, a2))|r ∈ F}, such that ∀(i, (a1, r, a2)) ∈ P, r ∈ F :
(�(a1), �(a2)) = 1. In the example, a matching would have to bind
x and ?y in such a way that AFTER(?y, 1930) = 1. ?i3 is left unbound.
hen, a match for a filter pattern is a matching applied to the pattern,
.e. in our case e.g.,

#1 : Elvis TYPE singer

#2 : Elvis BORNINYEAR 1935

?i3 : 1935 AFTER 1930

ee Section 4.4 for implementation issues.

. Sources for YAGO

.1. WordNet

WordNet is a semantic lexicon for the English language devel-
ped at the Cognitive Science Laboratory of Princeton University
26]. WordNet distinguishes between words as literally appearing
ersion 3.0, WordNet contains 82,115 synsets for 117,798 unique

7 There exist synsets, though, that represent different meanings, but contain the
ame words.
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ouns. (Wordnet also includes other types of words like verbs and
djectives, but we consider only nouns in this article.) WordNet
rovides relations between synsets such as hypernymy/hyponymy
i.e. the relation between a sub-concept and a super-concept) and
olonymy/meronymy (i.e. the relation between a part and the
hole); for this article, we focus on hypernyms/hyponyms. Concep-

ually, the hypernymy relation in WordNet spans a directed acyclic
raph (DAG) with a single root node called entity.

.2. Wikipedia

Wikipedia is a multilingual, Web-based encyclopedia. It is writ-
en collaboratively by volunteers and is available for free. We
ownloaded the English version of Wikipedia in November 2007,
hich comprised 2,000,000 articles at that time. Each Wikipedia

rticle is a single Web page and usually describes a single topic or
ntity.

The majority of Wikipedia pages have been manually assigned to
ne or multiple categories. The page about Elvis Presley, for example,
s in the categories American rock singers, 1935 births, and 34 more.

Furthermore, a Wikipedia page may have an infobox. An infobox
s a standardized table with information about the entity described
n the article. For example, there is a standardized infobox for
eople, which contains the birth date, the profession, and the
ationality. Other widely used infoboxes exist for cities, music
ands, companies, etc.

For our information extraction, we use the XML dump of
ikipedia. It is approximately 3 Gigabytes large and stores the

rticles in the original Wiki markup language.

. Information extraction

The construction of the YAGO ontology takes place in two stages:
rst, different heuristics are applied to Wikipedia to extract candi-
ate entities and candidate facts. This stage also establishes the
onnection between Wikipedia and WordNet. Then, quality con-
rol techniques are applied. We will now explain these two steps in
etail and afterwards explain how YAGO is stored.

.1. Wikipedia heuristics

Since Wikipedia knows far more individuals than WordNet, the
ndividuals for YAGO are taken from Wikipedia. Each Wikipedia
age title is a candidate to become an individual in YAGO . For
xample, the page title “Albert Einstein” is a candidate to become
he individual Albert Einstein in our ontology. The page titles
n Wikipedia are unique. Our algorithm parses the XML dump of

ikipedia and applies 4 different types of heuristics to the articles.

.1.1. Infobox heuristics

.1.1.1. Attributes and values. A Wikipedia article may contain an
nfobox (see Fig. 2). It is well-known [2] that an infobox is a rich
ource of facts about the article entity. Each row in the infobox
able contains an attribute and a value. For example, an infobox
n the page of Elvis Presley may contain the attribute Born with
he value January 8, 1935. We have identified 170 highly frequent
ttributes. For each of these attributes, we have manually designed
YAGO relation, the target relation. For example, for the attribute
orn, we introduced the relation BIRTHDATE with domain person
nd range timeInterval. Some attributes use the same relation.

or example, both Born and Birthday map to the relation BIRTHDATE.
n principle, each row of the infobox will generate one fact. Its first
rgument is the article entity, its relation is determined by attribute
nd its second argument is the value of the attribute. However, we
ap some attributes to the inverse of a relation. For example, the

t

m
w
o

Fig. 2. A Wikipedia Infobox.

ttribute official name has as its value the official name of the article
ntity. But instead of generating the fact (entity, HASOFFICIALNAME,
fficial name), our algorithm rather generates the fact (official name,
EANS, entity). For the purpose of the knowledge extraction, we call
hese attributes inverse attributes.
Some attributes may have multiple values. For example, a person

ay have multiple children. In this case, one row of the infobox
ill generate multiple facts – one HASCHILD fact for each child. Again

ther attributes do not concern the article entity, but another fact.
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or example, the attribute GDPasOf gives the year in which the gross
omestic product (GDP) of a country was computed. In this case, the
lgorithm does not generate the fact (country, GDPASOF, year), but
ather the fact (id, DURING, year), where id is the id of the previously
stablished fact (country, HASGDP, gdp). Thus, we get the following
act (in shorthand notation):

ountry HASGDP gdp DURING year

ometimes, the meaning of the attribute depends on the type of
he infobox. For example, the length of a car is an extent in space,
hereas the length of a song is a duration. Hence we allow ambigu-

us attributes to be qualified by the type of the infobox (in this
xample we distinguish car infoboxes and song infoboxes). In sum-
ary, an infobox heuristic is a manually established mapping from
(possibly qualified) attribute to the target relation that stores
hether the attribute is an inverse attribute, whether it allows
ultiple values and whether it is about another fact.

.1.1.2. Parsing. When our algorithm finds an infobox, it walks
hrough all of its attributes. If a heuristic is available for the
ttribute, the algorithm tries to parse the value of the attribute as
n instance of the range of the target relation. For example, the
ttribute Birth date has the target relation BIRTHDATE. Its range is
imeInterval. Hence the parser tries to parse the value of the
ttribute as a time interval (i.e. as a year or a date expression).
e use the parser from [50] to parse literals of different types.

his parser uses regular expressions to parse numbers, dates and
uantities. It also normalizes units of measurement to ISO units. If
he range of the target relation is not a literal class (but, e.g. the
lass person), the parser expects a Wikipedia entity as value and
ence tries to find a Wikipedia link. If the parse fails, the attribute is

gnored. Inverse attributes and attributes with multiple values are
andled accordingly. Last, the type of the infobox (e.g. city infobox
r person infobox) produces a candidate fact that establishes the
rticle entity as an instance of the respective class.

There is one exception: for each country, Wikipedia contains
page on its economy (e.g. a page with the title “Economy of the
nited States”). In these cases, the parser is configured to attach the
xtracted facts not to an entity economy of the United States
ut rather to the country itself.

.1.2. Type heuristics

.1.2.1. Wikipedia categories. To establish for each individual its
lass, we exploit the category system of Wikipedia. There are differ-
nt types of categories: some categories, the conceptual categories,
ndeed identify a class for the entity of the page (e.g. Albert Einstein
s in the category Naturalized citizens of the United States). Other cat-
gories serve administrative purposes (e.g. Albert Einstein is also
n the category Articles with unsourced statements), others yield
elational information (like 1879 births) and again others indicate
erely thematic vicinity (like Physics).

.1.2.2. Conceptual categories. Only the conceptual categories are
andidates for serving as a class for the individual. The adminis-
rative and relational categories are very few (less than a dozen)
nd can be excluded by hand. To distinguish the conceptual cat-
gories from the thematic ones, we employ a shallow linguistic
arsing of the category name (using the Noun Group Parser of [50]).
or example, a category name like Naturalized citizens of the United

tates is broken into a pre-modifier (Naturalized), a head (citizens)
nd a post-modifier (of the United States). Heuristically, we found
hat if the head of the category name is a plural word, the category
s most likely a conceptual category. We used the Pling-Stemmer
rom [50] to identify and stem plural words. This gives us a (possibly

W
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mpty) set of conceptual categories for each Wikipedia page. Con-
eniently, articles that do not describe individuals (like hub pages)
o not have conceptual categories. Thus, the conceptual categories
ield not only the TYPE relation, but also, as its domain, the set of
ndividuals. It also yields, as its range, a set of classes.

.1.2.3. The Wikipedia category hierarchy. The Wikipedia categories
re organized in a directed acyclic graph, which yields a hierarchy
f categories. This hierarchy, however, reflects merely the thematic
tructure of the Wikipedia pages (e.g. as mentioned in the introduc-
ion, Elvis is in the category Grammy Awards). Thus, the hierarchy is
f little use from an ontological point of view. Hence we take only
he leaf categories of Wikipedia and ignore all higher categories.
hen we use WordNet to establish the hierarchy of classes, because
ordNet offers an ontologically well-defined taxonomy of synsets.

.1.2.4. Integrating WordNet synsets. Each synset of WordNet
ecomes a class of YAGO. Care is taken to exclude the proper nouns
nown to WordNet, which in fact would be individuals (Albert
instein, e.g. is also known to WordNet, but excluded). There are
oughly 15,000 cases, in which an entity is contributed by both

ordNet and Wikipedia (i.e. a WordNet synset contains a common
oun that is the name of a Wikipedia page). In some of these cases,
he Wikipedia page describes an individual that bears a common
oun as its name (e.g. Time exposure is a common noun for WordNet,
ut an album title for Wikipedia). In the overwhelming majority of
he cases, however, the Wikipedia page is simply about the com-

on noun (e.g. the Wikipedia page Physicist is about physicists). To
e on the safe side, we always give preference to WordNet and dis-
ard the Wikipedia individual in case of a conflict. This way, we lose
nformation about individuals that bear a common noun as name,
ut we ensure that all common nouns are classes and no entity is
uplicated.

.1.2.5. Connecting Wikipedia and WordNet. The SUBCLASSOF hierar-
hy of classes is taken from the hyponymy relation from WordNet:
class is a subclass of another one, if the first synset is a hyponym of

he second. Now, the lower classes extracted from Wikipedia have
o be connected to the higher classes extracted from WordNet. For
xample, the Wikipedia class American people in Japan has to
e made a subclass of the WordNet class person. To this end, we
se the following algorithm:

We first determine the head compound, the pre-modifier and
he post-modifier of the category name (lines 1–3). For the
ikipedia category American people in Japan, these are “American”,
people” and “in Japan”, respectively. We stem the head compound
f the category name (i.e. people) to its singular form (i.e. person)
n line 4. Then we check whether there is a WordNet synset for the
oncatenation of pre-modifier and head compound (i.e. American
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Table 1
Some category heuristics

Regular expression Relation

([0–9]{3,4}) births BORNONDATE
([0–9]{3,4}) deaths DIEDONDATE
([0–9]{3,4}) establishments ESTABLISHEDONDATE
([0–9]{3,4}) books|novels WRITTENONDATE
Mountains|Rivers in (.*) LOCATEDIN
Presidents|Governors of (.*) POLITICIANOF
(
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As a result, an entity is always referred to by the same identi-
fier in all facts in YAGO. Type Checking eliminates individuals that
F.M. Suchanek et al. / Web Semantics: Science, Servic

erson). If this is the case, the Wikipedia class becomes a subclass of
he WordNet class (lines 5–6). If this is not the case, we exploit that
he Wikipedia category names are almost exclusively endocentric
ompound words (i.e. the category name is a hyponym of its head
ompound, e.g. “American person” is a hyponym of “person”). The
ead compound (“person”) has to be mapped to a corresponding
ordNet synset (s1, . . . , sn in line 7). This mapping is non-trivial,

ince one word may refer to multiple synsets in WordNet. We
xperimented with different disambiguation approaches. Among
thers, we mapped the co-occurring categories of a given category
o their possible synsets as well and determined the smallest sub-
raph of synsets that contained one synset for each category. These
pproaches lead to non-satisfactory results.

Finally, we found that the following solution works best: Word-
et stores with each word the frequencies with which it refers to the
ossible synsets. We found out that mapping the head compound
imply to the most frequent synset (s1) yields the correct synset in
he overwhelming majority of cases. This way, the Wikipedia class
merican people in Japan becomes a subclass of the WordNet class
erson/human. It would be possible to introduce another interme-
iate class, so that American people in Japan becomes a subclass of
merican person, which is again a subclass of person/human. Since

here are only very few cases in which a category name has both a
re-modifier and a post-modifier, we waived this possibility.

.1.2.6. Exceptions. There were only around two dozen prominent
ases in which the disambiguation of the Wikipedia category names
ailed. For example, all categories with the head compound “capital”
n Wikipedia mean the “capital city”, but the most frequent sense
n WordNet is “financial asset”. We corrected these cases manu-
lly. In summary, we obtain a complete hierarchy of classes, where
he upper classes stem from WordNet and the leaves come from

ikipedia.

.1.3. Word heuristics

.1.3.1. Exploiting WordNet synsets. Wikipedia and WordNet also
ield information on word meaning. WordNet for example reveals
he meaning of words by its synsets. For example, the words “urban
enter” and “metropolis” both belong to the synset city. We lever-
ge this information in two ways. First, we introduce a class for each
ynset known to WordNet (i.e. city). Second, we establish a MEANS

elation between each word of the synset and the corresponding
lass (i.e. (“metropolis”, MEANS, city)).

.1.3.2. Exploiting Wikipedia redirects. Wikipedia contributes
ames for the individuals by its redirect system: a Wikipedia
edirect is a virtual Wikipedia page, which links to a real Wikipedia
age. These links serve to redirect users to the correct Wikipedia
rticle. For example, if the user typed “Einstein, Albert” instead of
Albert Einstein”, then there is a virtual redirect page for “Einstein,
lbert” that links to “Albert Einstein”. We exploit the redirect
ages to give us alternative names for the entities. Each redirect
ives us one MEANS fact (e.g. (“Einstein, Albert”, MEANS, Albert
instein)).

.1.3.3. Parsing person names. The YAGO hierarchy of classes allows
s to identify individuals that are persons. If the words used to
efer to these individuals match the common pattern of a given
ame and a family name, we extract the name components and

stablish the relations GIVENNAMEOF and FAMILYNAMEOF. For example,
e know that Albert Einstein is a person, so we introduce the

acts (“Einstein”, FAMILYNAMEOF, Albert Einstein) and (“Albert”,
IVENNAMEOF, Albert Einstein). Both are subrelations of MEANS,
o that the family name “Einstein”, for example, also means Albert

d
t
a
r
d

.*) winners HASWONPRIZE
A-Za-z]+ (.*) winners HASWONPRIZE

instein. We used the Name Parser from [50] to identify and
ecompose the person names.

.1.4. Category heuristics

.1.4.1. Relational categories. Relational Wikipedia categories give
aluable information about the article entity. For example, if a
age is in the category Rivers in Germany, then we know that the
rticle entity is LOCATEDIN Germany. Category information is very
seful, because not every article has an infobox, but most articles
ave categories. We designed simple category heuristics to exploit
he category names. Each heuristic is basically a pair of a regu-
ar expression (e.g. “Mountains|Rivers in (.*)”) and a target relation
e.g. LOCATEDIN). If a category name matches the regular expression,
new fact is added, where the first argument is the article entity,

he relation is the target relation and the second argument is the
tring captured by the brackets of the regular expression. If, e.g. the
hine is in the category Rivers in Germany, then we add the fact
Rhine, LOCATEDIN, Germany). Table 1 shows some of our category
euristics.

Since all candidate facts will be type checked, we can be gener-
us with our heuristics. For example, the last two heuristics will
xtract “American Nobel Prize” and “Nobel Prize”, respectively,
rom the category name “American Nobel Prize winners”. Of course,
Nobel Prize” is the correct choice, because the category says that
he prize winner is American, not the prize. At this stage, however,
e keep both candidates and rely on the type check to sort out the
rong one (see Section 4.2.2).

.1.4.2. Language categories. There are some special categories that
ndicate the name of the article entity in other languages. For exam-
le, the city of London is in the special category fr:Londres, meaning
hat London is called “Londres” in French. Our algorithm maps the
anguage prefix “fr” to the appropriate language entity (French)
nd adds the following candidate fact:

London ISCALLED “Londres”
INLANGUAGE French

.2. Quality control

Our goal is to deliver an ontology of high quality. For this
urpose, we developed rigorous quality control mechanisms.
anonicalization makes each fact and each entity reference unique.
o not have a class. It also eliminates facts that do not respect
he domain and range constraints of their relation. As a result,
n argument of a fact in YAGO is always an instance of the class
equired by the relation. We will now discuss these steps in
etail.
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.2.1. Canonicalization

.2.1.1. Redirect resolution. Our infobox heuristics deliver facts that
ave Wikipedia entities (i.e. Wikipedia links) as arguments. These

inks, however, need not be the correct Wikipedia page identifiers.
or example, a reference to the city of Saint Petersburg may be given
s the link St. Petersburg. If one clicks on that link, Wikipedia’s
edirect system will seamlessly forward to the correct page Saint
etersburg, but for our ontology, these incorrect links have to be
esolved. So, for each argument of each candidate fact, our algo-
ithm checks whether the argument is an incorrect Wikipedia
dentifier and replaces it by the correct, redirected, Wikipedia iden-
ifier.

.2.1.2. Removal of duplicate facts. Sometimes, two heuristics
eliver the same fact. In this case, our canonicalization eliminates
ne of them. Furthermore, if one fact is more precise than another,
hen only the more precise fact is kept. For example, if the cate-
ory heuristic has determined a birth date of 1935 and the infobox
euristic has determined 1935-01-08, then only the fact with
935-01-08 is kept.

.2.2. Type checking

.2.2.1. Reductive type checking. A candidate fact may contain an
ntity for which the heuristics could not determine its class. Since
e cannot validate such a fact, our algorithm discards these facts.

he same applies to Wikipedia entities that have been proposed
or an article, but that do not have a page yet. For the remaining
acts, our algorithm knows the class(es) and all super classes for
ach entity. If it encounters a fact where the first argument is not in
he domain of the relation, this fact is eliminated (similarly for the
econd argument and the range). This type constraint also applies to
iterals, but the extraction heuristics already make sure that literals
ave the correct data type.

.2.2.2. Inductive type checking. Type constraints cannot only be
sed to eliminate facts, but also to generate facts. If, for example,
ome entity has a birth date, then one could infer that the entity is
person – rather than eliminating the fact due to lack of type infor-
ation. We call this process inductive type checking, as opposed to

eductive type checking. We have made the experience that for per-
on entities, inductive type checking works very well. So whenever
fact contains an unknown entity and the range or domain of the

elation predicts that the entity should be a person, the algorithm
eeps the fact and makes the entity an instance of the class per-
on. Reductive type checking is not applied in these cases. We use a
egular expression check to make sure that the entity name follows
he basic pattern of given name and family name.

.3. Storage

.3.1. Descriptions
Due to its generality, the YAGO ontology can store meta-relations

niformly together with usual relations. For example, we store for
ach individual the URL of the corresponding Wikipedia page with
he DESCRIBES relation. This will allow future applications to provide
he user with detailed information on the entities. We introduce
he DESCRIBES relation between the individual and its URL for this
urpose.
.3.2. Witnesses
When a new fact was extracted from a particular Web page, we

all this page the witness for the fact. We introduce the FOUNDIN rela-
ion, which holds between a fact and the URL of the witness page.

e use the USING relation to identify the technique by which a fact
Agents on the World Wide Web 6 (2008) 203–217

as extracted and the DURING relation to give the time of the extrac-
ion. The information about witnesses will enable applications to
se, e.g. only facts extracted by a certain technique, facts extracted
rom a certain source or facts of a certain date.

.3.3. File format
The YAGO model itself is independent of a particular data stor-

ge format. To produce minimal overhead, we decided to use simple
ext files as an internal format. We maintain a folder for each rela-
ion and each folder contains files that list the entity pairs. With
ach fact, we store the estimated accuracy as a value between 0 and
(as given by our evaluation, see Section 5). We provide conversion
rograms to convert the ontology to different output formats. First,
AGO is available as a simple XML version of the text files. We also
rovide an RDFS version of YAGO , as explained in Section 2.7. Fur-
hermore, YAGO can be converted to a database table. The table has
he simple schema

ACTS(factId, arg1, relation, arg2, accuracy)

e provide software to load YAGO into an Oracle, Postgres, or
ySQL database.

.4. Query engine

We implemented a simple query engine along the lines of [32] on
op of the database version of YAGO. It can solve queries of the form
escribed in Section 2.8. The engine first normalizes the shorthand
otations to the standard notation, so that each line of the query
onsists of a fact identifier, a first argument, a relation and a second
rgument. Since entities can have several names in YAGO, we have
o deal with ambiguity. Our query engine makes sure that each
ord in the query is considered in all of its possible meanings. For

his purpose, we replace each non-literal, non-variable argument
n the query by a fresh variable and add a MEANS fact for it. We call
his process word resolution. Consider, for example, the query “Who
as born after Elvis?”:

?i1 : Elvis BORNONDATE ?e
?i2 : ?x BORNONDATE ?y
?i3 : ?y AFTER ?e

his query becomes

?i0 : “Elvis” MEANS ?Elvis
?i1 : ?Elvis BORNONDATE ?e
?i2 : ?x BORNONDATE ?y
?i3 : ?y AFTER ?e

n answer to this query shall bind the variables of the original,
on-normalized query (assume them to be ?e, ?x and ?y) and
he variables introduced by the word resolution (i.e. in our case
Elvis). We first discard lines with filter relations. In our exam-
le, the last line is discarded. Then, one single SQL query is fired.

t contains one SELECT argument for each variable that we want to
ind and one join for each line of the query. In the example, the SQL
uery is

SELECT f0.arg2, f1.arg2, f2.arg1, f2.arg2
FROM facts f0, facts f1, facts f2

WHERE f0.arg1=‘"Elvis"’
AND f0.relation=‘means’
AND f1.arg1=f0.arg2
AND f1.relation=‘bornOnDate’
AND f2.relation=‘bornOnDate’
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This query delivers values for the variables ?Elvis, ?e, ?x and
y. Then, the query engine evaluates the AFTER relation on the pair
y /?e. If the relation holds, the binding of the variables is returned
s a result.

In the deductive closure, an individual is an instance of all
uper-classes of its class. Since many queries ask for the class an
ndividual belongs to, we pre-computed the deductive closure of
he type/subclassOf-axiom, so that each individual is connected
y a type fact to all of its super-classes.

This implementation leaves much room for improvement, espe-
ially concerning efficiency. For example, it takes several seconds to
eturn 10 answers to the query “Who was born after Elvis?”. Queries
ith more joins can take even longer. In this article, we use the

ngine only to showcase the contents of YAGO.

. Evaluation

.1. Precision

We were interested in the precision of YAGO . To evaluate
he precision of an ontology, its facts have to be compared to
ome ground truth. Since there is no computer-processable ground
ruth of suitable extent, we had to rely on manual evaluation.

e presented randomly selected facts of the ontology to human
udges and asked them to assess whether the facts were correct.
or each fact, judges could click “correct”, “incorrect” or “don’t
now”. Since common sense often does not suffice to judge the
orrectness of YAGO facts, we also presented them a snippet of
he corresponding Wikipedia page. Thus, our evaluation compared
AGO against the ground truth of Wikipedia (i.e. it does not deal
ith the problem of Wikipedia containing some small fraction

f false information). Of course, it would be pointless to evalu-
te the portion of YAGO that stems from WordNet, because we
an assume human accuracy here. Likewise, it would be pointless
o evaluate the non-heuristic relations in YAGO, such as DESCRIBES

r FOUNDIN. This is why we evaluated only those facts that stem
rom a heuristic. 13 judges participated in the evaluation and eval-
ated a total number of 5200 facts. We report the precision of

he most precise and least precise heuristics groups in Table 2. To
e sure that our findings are significant, we computed the Wil-
on interval [9] for ˛ = 5%. A confidence interval of 0% means that
he facts produced by the heuristic have been evaluated exhaus-
ively.

t
a
r
a
a

able 2
recision of YAGO’s heuristics

Heuristic

1 hasExpenses
2 hasInflation
3 hasLaborForce
4 during
5 ConceptualCategory
6 participatedIn
7 plays
8 establishedInYear
9 createdOn

10 originatesFrom
. . .

2 WordNetLinker
. . .

74 InfoboxType
5 hasSuccessor

. . .
8 hasGDPPPP
9 hasGini
0 discovered
Agents on the World Wide Web 6 (2008) 203–217 213

The evaluation shows very good results. 74 heuristics have a
recision of over 95%. Especially the crucial link between WordNet
nd Wikipedia, WordNetLinker, turned out to be very accurate. Also,
he use of conceptual categories (ConceptualCategory) and infobox
ypes (InfoboxType) to establish the TYPE relation proved very fruit-
ul. establishedInYear is a category heuristic, the other heuristics
hown in the table are infobox heuristics. Our algorithms cannot
lways achieve a precision of 100%. One reason for this is purely sta-
istical: even if all of our assessed sample facts are correct (as they
ere indeed for many heuristics), the center of the Wilson interval
ill be lower than 100% to account for the uncertainty that is inher-

nt in a confidence estimation. Some fraction of the assessed facts
as extracted incorrectly. For example, the inductive type check-

ng mistook a racing horse for a person, because it had a birth date.
he WordNetLinker made the Los Angeles Angels of Anaheim
anagers a subclass of angel.

Another source of error are inconsistencies of the underlying
ources. For example, for the relation BORNONDATE, most false facts
tem from erroneous Wikipedia categories (e.g. some person born
n 1802 is in the Wikipedia category 1805 births). For facts with lit-
rals (such as HASHEIGHT), many errors stem from a non-standard
ormat of the numbers (giving, e.g. one movie actor the height of
.6 km, just because the infobox says 1,632 m instead of 1.632 m).
ccasionally, the data in Wikipedia was updated between the time
f our extraction and the time of the evaluation. This explains
any errors in HASGDPPPP and HASGINI. In addition, the evalua-

ion of an ontology is sometimes a philosophical issue, because
ven simple relations suffer from vagueness. For example, is Lake
ictoria LOCATEDIN Tanzania, if Tanzania borders the lake? Is an
conomist who works in France a French Economist, even if he
as born in Ireland? These cases of disputability are inherent even

o human-made ontologies. Thus, we can be extremely satisfied
ith our results. Further note that these values measure just the
otentially weakest point of YAGO , as all other facts were derived
on-heuristically.

It is difficult to compare YAGO to other information extraction
pproaches, because the approaches usually differ in the choice of
elations and in the choice of the sources. Furthermore, precision
an usually be varied at the cost of recall. Approaches that use pat-

ern matching (e.g. the Espresso System [41] or LEILA[49]) typically
chieve precision rates of 50– 92%, depending on the extracted
elation. State-of-the-art taxonomy induction as described in [46]
chieves a precision of 84%. KnowItAll [25] and KnowItNow [11]
re reported to have precision rates of 85% and 80%, respectively.

#Eval Precision

46 100.0% ± 0.0%
25 100.0% ± 0.0%
43 97.67441% ± 0.0%

232 97.48950% ± 1.838%
59 96.94342% ± 3.056%
59 96.94342% ± 3.056%
59 96.94342% ± 3.056%
57 96.84294% ± 3.157%
57 96.84294% ± 3.157%
57 96.84294% ± 3.157%

56 95.11911% ± 4.564%

76 95.08927% ± 4.186%
53 94.86150% ± 4.804%

75 91.22189% ± 5.897%
62 91.00750% ± 6.455%
84 90.98286% ± 5.702%
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Table 3
Number of entities in YAGO

Relations 92
Classes 224,391
Individuals (without words and literals) 1,531,588

People 546,308
Locations 230,988
Institutions/companies 57,893
Movies 33,234

Table 4
Largest relations in YAGO

Relation # Facts Relation # Facts

hasUTCOffset 12724 hasWonPrize 13645
livesIn 15185 writtenInYear 16441
originatesFrom 16876 directed 18633
hasPredecessor 19154 actedIn 22249
hasDuration 23652 bornInLocation 24400
hasImdb 24659 hasArea 26781
hasProductionLanguage 27840 produced 30519
hasPopulation 30731 isOfGenre 33898
hasSuccessor 46658 establishedOnDate 69529
hasWebsite 79779 created 83627
locatedIn 125738 diedOnDate 168037
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Table 5
Size of other ontologies

Ontology # Entities # Facts

SUMO [39] 20,000 60,000
Ponzetto et al. [43] n/a 110,000
WordNet [26] 117,659 821,492
Cyc [36] 300,000 3,000,000
TextRunner [4] n/a 7,800,000
YAGO 1,700,000 15,000,000
DBpedia [2] 1,950,000 103,000,000

Table 6
Simple queries on YAGO

Query Result

Who was Einstein’s doctoral advisor? ?x=Alfred Kleiner

Einstein hasDoctoralAdvisor ?x

Who is named after a place in Africa? ?who=Gabriel Sudan
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weaving the YAGO ontology into a text corpus. This allows ESTER
to deliver hybrid answers that incorporate both data from the text
and from the ontology.

Table 7
Advanced queries on YAGO

Which countries have a ?other=Sweden

higher HDI than Canada? and 4 others
CanadaHASHDI ?HDIcanada

?otherHASHDI ?HDIother

?HDIother > ?HDIcanada

When did Angela Merkel become chancellor? ?when=2005-11-22
ubClassOf 211979 bornOnDate 350613
ivenNameOf 464816 familyNameOf 466969
nLanguage 2389627 isCalled 2984362
ype 3957223 means 4014819

extRunner [4] is able to extract a large amount of facts (11.3
illion) out of which only an estimated 69% (7.8 million) are
ell-formed. Of these well-formed facts, the authors estimate

hat 82% are correct. Wu et al. [55] aim at filling in missing values
n Wikipedia infoboxes and achieve a remarkable precision of
3–97%. Ponzetto et al. [43] exploit the Wikipedia category net-
ork to construct a taxonomy and achieve a precision of around
7%. Banko et al. [5] use different domain search strategies for fact
xtraction and show a precision of around 80%.

.2. Size

Table 3 shows the number of entities in YAGO . Half of YAGO’s
ndividuals are people and locations. Other prominent groups are
nstitutions and movies. The overall number of entities is 1.7 mil-
ion.

Table 4 shows the number of facts for the most frequent relations
n YAGO . The overall number of ontological facts is 15 million. This
umber does not yet include the respective witness facts (FOUNDIN,
URING and USING) and the trivial facts (INUNIT, HASVALUE and DESCRIBES).
AGO profits most from the infoboxes about movies, persons, and
eopolitical entities.

It is not easy to compare the size of YAGO to other ontologies,
ecause the ontologies usually differ in their structure, their types
f axioms, their relations, their domain, and their quality. For infor-
ational purposes, we list the current number of entities and facts

or some of the most important other domain-independent ontolo-
ies in Table 5, as given on the respective Web sites. DBpedia is huge,
ut it includes YAGO.

. Applications

.1. Querying
As described in Section 4.4, we have implemented a query
ngine for accessing the content of YAGO. Table 6 shows two sim-
le queries on the ontology. The second query makes use of the
istinction between words and other individuals in YAGO.

A

S
H
G

I

place locatedin Africa and 22 more
name means ?place

name familynameof ?who

Table 7 shows three advanced queries. The first query uses a
irtual relation (>) to ask for countries having a higher Human
evelopment Index (HDI) than Canada. YAGO knows 5. The other
ueries show how reified facts work.

It is tempting to assume some kind of “completeness” of YAGO
nd to ask, e.g. how to say a particular word in Italian, who gov-
rned a particular country at a particular point of time or who was
particular person’s doctoral advisor. It should not be forgotten,
owever, that YAGO cannot know more than what is available in
he infoboxes and categories of Wikipedia. YAGO’s knowledge is
uge, but it cannot be complete.

.2. Scientific applications

Notwithstanding its young age, YAGO has already found several
pplications in different areas of research.

.2.1. Semantic search
YAGO is the basis for the semantic search engines NAGA [32]

nd ESTER [6]. NAGA utilizes YAGO as a knowledge base for graph-
ased information retrieval. It allows querying YAGO in a SPARQL-

ike fashion and ranks the answers according to their “prominence”.
ts ranking mechanism uses YAGO’s data model to formalize notions
ike the compactness, informativeness and confidence of answer
raphs. ESTER combines full text search and ontological search by
ngela MerkelISAchancellor

INCE?when

ow is Germany called in Italian? ?how=“Germania”

ermany isCalled ?how

NLANGUAGEItalian
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Fig. 3. YAGO and Other Ontologies.

.2.2. Entity organization
Stoyanovich et al.[48] build an enriched Web graph, which

ontains Web pages and the entities mentioned in them. Based
n this graph, the authors propose authority-based ranking tech-
iques that combine Web page authorities and entity authorities

nto a mutual reinforcement process. The ontological basis for the
nriched graph structure is YAGO.

Demartini [19] aims at finding per-topic experts among the
ikipedia authors. YAGO’s semantics is exploited to refine and

isambiguate Wikipedia topics in the expert finding process.

.2.3. Information extraction
The idea of YAGO’s category heuristics has been applied

y Ponzetto et al. [43] to extract ontological knowledge from
ikipedia’s category system. Qi et al. [56] build on YAGO to extract

emporal facts from Web documents.

.3. Ontology construction

YAGO is used in numerous major ontology projects (Fig. 3).
reebase8 is a community effort to gather ontological data. YAGO
s currently being merged into Freebase and will thus contribute to
ootstrapping the project. UMBEL9 is a very young project, which
ims to provide a structure of subject concepts. YAGO will con-
ribute the individuals to this structure. The Suggested Upper Model
ntology SUMO [39] is a highly axiomatized manually assembled
ntology. SUMO and YAGO have been merged [21], thus combining
he rich axioms of SUMO with the large number of individuals from
AGO. The Linking Open Data Project [8] aims to interconnect exist-

ng ontologies as Web services. YAGO is already available as a Web
ervice (courtesy of Zitgist LLC10) and thus an integral part of the
roject. Cyc [36] is a commercial effort to create a huge semantic
nowledge base. We are co-operating with the Cyc team in order
o integrate data from YAGO into Cyc. DBpedia [2] is a project that
ims to extract ontological data from Wikipedia. YAGO is used in
Bpedia as a taxonomic backbone. It links the individuals to the

ordNet hierarchy of concepts in DBpedia.

8 http://freebase.com.
9 http://www.umbel.org.

10 http://www.zitgist.com.
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. Conclusion

.1. Summary

We presented our ontology YAGO and the methodology for con-
tructing it automatically. We explained the logical model behind
AGO and showed how it extends the data model of RDFS to repre-
ent n-ary relations. We proved that, despite the expressiveness of
he model, its consistency is still decidable. Furthermore, we could
how that the model allows computing a unique smallest base for
ny given YAGO ontology.

We showed how the category system and the infoboxes of
ikipedia can be exploited for knowledge extraction. We explained

ow Wikipedia and WordNet can be linked and how we can enforce
igh precision through type checks.

Our evaluation showed not only that YAGO is one of the largest
nowledge bases available today, but also that it has an unprece-
ented quality in the league of automatically generated ontologies.
number of major ontology projects already make use of YAGO.

.2. Discussion

Although the knowledge extraction itself runs in a fully auto-
ated way, a one-time manual effort was necessary to bootstrap

he extraction. We identified and defined attributes and relations
or the infoboxes, and we established the patterns for the category
euristics. Furthermore, we manually identified some exceptions

or the heuristic that connects Wikipedia and WordNet. Given the
uge amount of knowledge that we could extract in return and
iven the high precision of the data that we could achieve, we
elieve that the manual effort was justified.

So far, YAGO’s extraction mechanisms are tailored to Wikipedia
nd WordNet. However, our work has created a rich framework
f methods that can be applied to other sources as well. Many
ources, such as the catalogue of Amazon.com or the Internet Movie
atabase, use category systems and structures that are similar to

nfoboxes. Furthermore, techniques such as inductive and reductive
ype checking can be applied in other scenarios, too. Finally, YAGO
tself can be useful for other information extraction projects, e.g. to
heck the plausibility of the extracted facts.

.3. Outlook

YAGO opens up new opportunities and challenges. On the the-
retical side, we plan to investigate how the YAGO model and OWL
.1 can be reconciled, once OWL 1.1 has been fully developed. Fur-
hermore, the efficiency of the query engine deserves attention. On
he practical side, we plan to enrich YAGO by further facts from
ther sources. We also plan to look at ways to automatically grow
nd maintain the ontology. We hope that the knowledge that YAGO
lready provides will facilitate further extension. This could result
n a positive feedback loop, in which the addition of knowledge
elps the extraction of new knowledge.

YAGO can be freely downloaded from our Web site
ttp://www.mpii.de/yago. We hope that the availability of a
uge, clean, and high quality ontology can give new impulses to
he Semantic Web vision.

ppendix A. Proof of Theorem 1
Let F be a (finite) set of fact triples, as defined in Section 2.4. Let
be the rewrite system defined there (see [3] for a reference on

erm rewriting). All rules of the rewrite system are of the form F →
∪ {f }, where F ⊆ F and f ∈F. Hence → is monotone. Furthermore,

http://freebase.com
http://www.umbel.org
http://www.zitgist.com
http://www.mpii.de/yago
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is finite. Hence → is finitely terminating. It is easy to see that if
→ F ∪ {f1} and F → F ∪ {f2} for some F ⊆ F and f1, f2 ∈F, then

F → F ∪ {f1} → F ∪ {f1, f2}
F → F ∪ {f2} → F ∪ {f1, f2}

Hence → is locally confluent. Since → is finitely terminating, →
s globally confluent and convergent. Thus, given any set of facts
⊆ F, the largest set DF with F→∗DF is unique and finite.

ppendix B. Proof of Theorem 2

A canonical base of a YAGO ontology y is any base b of y, such
hat there exists no other base b′ of y with |b′| < |b|. This section
ill prove that, for a consistent YAGO ontology, there exists exactly

ne such base. In the following, → denotes the rewrite system and
denotes the set of facts defined in Section 2.4.

emma 1: [No circular rules]. Let y be a consistent YAGO ontology,
nd {f1, . . . , fn} a set of facts. Then there are no sets of facts F1, . . . , Fn,
uch that that F1, . . . , Fn ⊆ D(y) and

F1 ↪→ f1 with f2 ∈ F1
F2 ↪→ f2 with f3 ∈ F2
. . .
Fn ↪→ fn with f1 ∈ Fn

roof. By analyzing all possible pairs of rule schemes (1)–(5),
ne finds that the above rules must fall into one of the following
ategories:

All rules are instances of (5). In this case, (c,SUBCLASSOF,c) ∈ D(y)
for some common entity c and hence y cannot be consistent.
All rules are instances of (1). In this case, (c,SUBRELATIONOF,c) ∈ D(y)
for some common entity c and hence y cannot be consistent.
All rules are instances of (2). In this case, (c, r, c) ∈ D(y) for some
common entity c and relation r and (r, TYPE, atr) ∈ D(y) and hence
y cannot be consistent.
n = 2, one rule is an instance of (1), and the other an instance of
(2). In this case, (c, r, c) ∈ D(y) for some common entity c and rela-
tion r and (r, TYPE, atr) ∈ D(y) and hence y cannot be consistent.

�

emma 2: [No derivable facts in canonical base]. Let y be a con-
istent YAGO ontology. Let b be a canonical base of y and B = range(b).
et F be a set of facts such that B ⊆ F ⊆ D(y). Let f ∈ F be a fact such
hat F \ {f } → F . Then f /∈ B.

roof. Since b is a base, there is a sequence of sets of facts
0, . . . , Bn such that

= B0 → B1 → B2 → . . . → Bn−1 → Bn = D(y)

his sequence is a sequence of rule applications, where each rule
as the form S ↪→ s, where S ⊆ F and s ∈F. We call S the premise
f the rule and s its conclusion. We say that a fact t contributes to a
et of facts T in the sequence B0, . . . Bn, if there is a sequence of rule
pplications r1, . . . rm, so that t is in the premise of r1, the conclusion
f r1 is in the premise of r2 etc. and the conclusion of rm is in T.

Now assume f ∈ B. Since F \ {f } → F , there must be a rule G ↪→ f
ith G ⊆ F \ {f }. Let i ∈ [0, n] be the smallest index such that Bi ⊇ G. f
annot contribute to G, because then there would exist circular rules
n the sense of the preceding lemma. Hence f does not contribute
o G. Then B \ {f } is also a base, because the above rule applications
an be re-ordered so that f is derived from Bi. Hence b cannot be a
anonical base. �

[

[
[
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Now we are ready to prove Theorem 2:

heorem 2: [Uniqueness of the canonical base]. The canonical
ase of a consistent YAGO ontology is unique.

roof. Let b be a canonical base of a consistent YAGO ontology y.
et B = range(b). We define the set

:=D(y)/{f |D(y)/{f } → D(y)}
ntuitively speaking, C contains only those facts that cannot be
erived from other facts in D(y). By the previous lemma, B ⊆ C.
ssume B ⊂ C, i.e. there exists a fact f ∈ C, f /∈ B. Since C ⊆ D(y),
∈ D(y). Since b is a base, there exists a rule S ↪→ f for some S ⊆ D(y).
ence f /∈ C, which is a contradiction. Hence B = C and every canon-

cal base equals b.
This theorem entails that the canonical base of a YAGO ontology

an be computed by removing all facts that can be derived from
ther facts in the set of derivable facts. �
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